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Summary

This deliverable is dedicated to the works done within the WP5 - Synthetic Index and At-
tribution Scheme: the BACIndex. WP5 is divided into 4 main tasks and this second re-
port refers to the second one: Task 5.2 - Near-real-time processing of non-normalized
time series and large-scale adaptations.

Our main focus during this task was twofold: on one hand we have developed
a methodology to identify abnormal events in multivariate biosphere time series and
on the other hand we have been working on the extension and improvement of the
methods developed in Task 5.1 in order to cope with large-scale data and speed up
computation time.

These two main objectives correspond to the two sections of this deliverable:

1. Novelty Detection with Multivariate Autoregressive Models. In this section,
we show a methodology to detect extreme events in biosphere data based on au-
torregressive models fitted locally. Two complementary approaches were tested,
one based on coexceedances above a threshold and another one based on a
distance metric of the joint distribution of the variables. The methods have been
applied locally and globally.

2. Advances in the Maximally Divergent Intervals method for Anomaly Detec-
tion. In this second section, we present the improvements implemented for our
method developed during Task 5.1 and detailed in Deliverable 5.1. These ad-
vances include a more efficient evaluation of the Kullback-Leibler divergence
that allows us to speed up the computation time and to use significantly larger
data bases than before. Several experiments have been carried out along these
months with both artificial and real data. Additionally, we have started to test the
algorithm with real data developed within the BACI project by other partners of
the consortium.
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1 Multivariate Novelty Detection with Autoregressive
Models

During the first months of the project, we have been testing different methods and tech-
niques to detect abnormal events and applying them mainly to artificial data specifically
created for this task. Now, we propose a preliminary approach and we test it with a real
data application. The development of this approach would help us to later define a
BACIndex.

This intuitive approach combines multiple techniques and has been applied to as-
sess the occurrences of multivariate tail events of terrestrial biosphere variables. A
correct assessment of extreme events will allow us to detect sensitive regions as well
as more severe phases in the historical records.

In addition, the way our method is implemented will allow the definition of an attri-
bution scheme in the near future (Task 5.4 - Attribution Scheme). This would help us
to understand the processes underlying behind these anomalies.

The methodology proposed as well as the results obtained have been accepted
for presentation at the peer-reviewed conference: 6th International Workshop on Cli-
mate Informatics, to be hosted by the National Center for Atmospheric Research next
September in Colorado, USA, [12].

1.1 Methodology

We have followed the same scheme proposed in Deliverable 5.1 to achieve a Change
Index, dividing the process into: 1. Data Acquisition, 2. Preprocessing, 3. Feature
Extraction, 4. Event Detection and 5. Change Index, see Figure 1.

Figure 1: Steps to develop a Change Index, BACIndex.
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In the following sections, the approach used at each step will be detailed. We
explain and illustrate the method with the help of real data acquired at 50.5◦N, 12.5◦E,
in middle-Europe. Afterwards, an extension to a global scale will be presented.

1.1.1 Data Acquisition

In the tests carried out during the last months, a preliminary version of the Earth Sys-
tem Data Cube developed within the CAB-LAB project1 has been used. The Earth
System Data Cube is a practical way of storing spatio-temporal data consisting of:
time, latitude, longitude, and multivariate EOs. The initial global version covers from
January 2001 to December 2012 with one observation every 8 days and a spatial grid
with resolution of 1◦. Up to 14 atmospheric and biospheric variables are included in
this database. From these variables, we have used those that measure terrestrial bio-
sphere parameters:

• Fraction of photosynthetic active radiation (Fpar )

• Leaf surface temperature (LSTD)

• Global primary productivity (GPP)

• Terrestrial ecosystem respiration (TER)

• Heat flux (H)

• Latent heat flux (LE)

1.1.2 Preprocessing: deseasonalization and standarization

To avoid later inconsistencies, the data need to be pretreated. We have applied two
common techniques in environmental sciences; initially, we have removed the seasonal
pattern usually present in environmental variables. To do so we have just subtracted
the mean value of the time series corresponding to each day of the year. Then we
have standarized the remaining variables by subtracting its mean, µ, and dividing by
its variance, σ.

Figure 2 shows the deseasonalization and standarization of the variables at 50.5◦N,
12.5◦E. In the left plot, the 6 original variables are represented in blue, black lines
show their seasonal cycle and the remaining data once the seasonal cycle has been
subtracted is plotted in red. The seasonal cycle has been simply estimated as the
mean value of the signal for each day of the year. The right plot shows the resulting
time series after removing the seasonality and standarizing them (µ=0, σ=1). The
transformed time series presented in the right plot are the ones to be used in the
following steps.

1.1.3 Feature Extraction: ARMA models

An abnormal event can be defined as a point within the time series not well represented
by a previously fitted statistical model, [4]. Following this intuitive point of view, we have

1see: earthsystemdatacube.net/
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(a)

(b)

Figure 2: Deseasonalization (a) and standardization (b) of the 6 variables of interest.

applied an Autoregressive-moving-average model (ARMA model) to afterwards com-
pute the residuals between the model and the data. Those points where the residuals
are significantly high can be considered as extreme events that the model is not able
to represent. An ARMA(p, q) model consists of two parts, an autoregressive part (AR)
and a moving average part (MA). The coefficients p and q refer to the order of each
part:

Xt = εt +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiεt−i (1)

where ϕ1, ..., ϕp and θ1, ..., θq are parameters of the model and εt, εt−i, ... are white noise
error terms.
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Table 1: Cros-correlations coefficients

Fpar GPPall TERall LE LSTD H

Fpar 1.00 0.451 0.575 0.403 0.716 0.203
GPPall - 1.00 0.809 0.806 0.447 0.519
TERall - - 1.00 0.668 0.725 0.400

LE - - - 1.00 0.485 0.596
LSTD - - - - 1.00 0.430

H - - - - - 1.00

Although there are more complex approaches available, e.g. [3, 23], we are work-
ing with univariate ARMA models independently fitted to each variable. The work of
[10] compared the performance of univariate and multivariate models and as a result
of their work they recommended the use of univariate models, specially in those cases
where the cross-correlations between variables are not particularly strong. Multivariate
models involve a greater number of parameters, which might be a disadvantage, while
their performance is comparable to univariate approaches. Univariate simpler structure
and easier interpretation are additional valuable features. The cross-correlations within
our pretreated variables do not present very strong correlations (only two values above
0.8), see Table 1. This encourages us to follow an univariate approach. Nonetheless,
we plan to test other more complicated methods like multivariate ARMA models, Gen-
eralized Autoregressive Conditional Heteroscedasticity - GARCH models or Support
Vector Data Description (SVDD) techniques [25].

Following the procedure detailed by [2], we have plotted the autocorrelation and
partial autocorrelation functions of each pretreated variable, see Figure 3. These two
statistical measures indicate how a time series is related to itself over time. For exam-
ple, the autocorrelation function at lag k is the correlation between the original series
and the same series moved forward k timesteps (Xt and Xt−k). On the other hand, the
partial autocorrelation at lag k is the autocorrelation between Xt and Xt−k that is not
accounted for lags between 1 and k − 1. Applied to our time series, both plots (Figure
3) present an exponentially decreasing height of the red bars depicted: this indicates
that we need to consider a model with both parts (AR and MA) represented. Taking a
look at Figure 3, counting the number of bars exceeding the significance bands in the
partial autocorrelation gives us an idea of the autoregressive order to be considered.
In this case, it seems that 3 autoregressive terms represent sufficiently most of the
variables.

Considering this initial visual inspection we have fixed p = 3 (3 first autoregres-
sive terms) and we tested different values of q. To compare different fitted models, we
have used the Ljung-Box test applied to the residuals of the model [16]. The residuals
of a well fitted ARMA model should look like white noise [2]. By means of this test
we are able to analyze whether the residuals fulfill this assumption or not. In Table 2
the p-values of the Ljung-box test for models from (3,0) to (3,3) and all the variables
are summarized . Models with p, q values of (3,1), (3,2) and (3,3) guarantee residuals
without autocorrelation for all the variables while with the (3,0) model this is not guar-
anteed for Fpar and LSTD. Additionally the p-values for GPPall, LE and H are pretty
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low. Therefore we discard model (3,0). From the three remaining models, although the
(3,2) presented slightly higher p-values of the Ljung-Box test we selected the simplest
one: (3,1).

(a)

(b)

Figure 3: Autocorrelation plots (a) and Partial autocorrelation plots (b) of the 6 variables
pretreated.

1.1.4 Event Detection

Once we have selected the ARMA model to be applied, we extract the residuals be-
tween the model and the data. By means of these residuals, we identify the extreme
events within the multivariate time series. To do so, we have applied two different meth-
ods: a) estimating the coexceedances over a certain threshold and b) estimating the
Mahalanobis distance of the residuals to their mean.
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(p, q)

(3,0) (3,1) (3,2) (3,3)

Fpar — 0.665 0.990 0.989
GPPall 0.309 0.999 0.999 0.922
TERall 0.968 0.998 0.995 0.908
LE 0.242 0.982 0.991 0.999
LSTD — 0.849 0.987 0.572
H 0.212 0.989 0.953 0.945

Table 2: p-values of the Ljung-Box test for autocorrelation of the model residuals

Extreme residuals coexceedances We have defined an extreme residual as one for
which its absolute value lies above the 85% percentile of the residuals distribution. This
is done for each of our 6 variables of interest. From our 12-years database, the 15%
highest residuals count 83 exceedances for each variable. Next, we count the number
of variables simultaneously presenting an extreme residual for each timestep. Figure 4
shows the time series of coexceedances, also known as coincidences [1, 19, 22, 9, 29].
This is a very intuitive method and easy to understand, which, in addition, allows a di-
rect interpretation of the extremes detected.

Usually, extreme events are defined over higher/lower thresholds, for example 90%
for top-tail events or 10% for bottom-tail events. But we have considered at the same
time positive and negative extremes, therefore, we are not dividing between top-tail
coexceedances and bottom-tail coexceedances. A 10% cut-off to the absolute value
would give us few observations for a meaningful analysis, which is the reason why we
adopted a threshold at the 85% percentile.

Mahalanobis distance The main disadvantage of the coexceedances method is that
it does not take into account the shape of the joint distribution of the residuals. To try
to solve this problem, the Mahalanobis distance would be a good alternative [17]. This
metric, also known as Hotellings T2 [13], compared to the Euclidean distance does
not only takes the mean but also the covariance matrix of the distribution into account
(Figure 5).

Figure 4: Coexceedances.
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Although the residuals joint distribution does not follow a multivariate Gaussian dis-
tribution, it does not present a clear multimodality, see Figure 6. Therefore, Maha-
lanobis is still a robust approach as argued by [27]. Another more complex option
would be the use of Support Vector Data Description (SVDD) techniques [25].

A direct comparison between both methods would not be fair as both methods
present different characteristics: the coexceedances method requires an initial thresh-
old for each variable while the Mahalanobis distance is computed to all the residuals
without considering a threshold. In addition, both methods are measuring different as-
pects: a peak or strong coexceedance event requires that almost all the variables at the
same time exceed the threshold imposed; but on the other hand, a peak in the Maha-
lanobis distance time series is only pointing to an observation that differs significantly
from the rest of joint distribution without informing if this large distance is caused in 1,

Figure 5: Mahalanobis distance.

Figure 6: Histograms and scatter-plot matrix of the ARMA (3,1) residuals.
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2 or the 6 dimensions at the same time. In other words, coexceedances only inform
about those time steps where more than one variable exceed the threshold but with-
out informing about the intensity of this exceedance and Mahalanobis distance only
informs about far points in the joint distribution but without informing about in which or
how many dimensions.

For benchmarking, we have focused on one important historical event, the heat-
wave of 2003. In the summer of 2003, Europe experienced the warmest summer
record so far with many casualties, economic and ecologic damages [7, 5, 20, 21, 24].
From a simple visual inspection, it can be seen in Figures 4 and 5 that the Mahalanobis
distance seems to detect the event during summer 2003 with a period of high distance
values. On the other hand, within this period the number of variables coexceeding does
not seem to be more than 3 out of 6 variables.

1.2 Global Application

Following the same procedure explained before, we have applied it to all the locations
encompassed in the Earth System Data Cube. At each punctual location, we have de-
seasonalized and normalized the 6 variables (µ=0, σ=1) and then fitted an ARMA(3,1)
model. We have assumed the same kind of ARMA model for all the locations for
comparison and simplicity reasons. However, we are aware this might be a strong as-
sumption and we keep on investigating alternative approaches.

Comparing the results provided by the model with the 6 variables itself, we obtain
the residuals at each location. With these residuals we have: a) counted the coex-
ceedances over a local threshold at the 85% percentile and b) estimated the Maha-
lanobis distances for all the timesteps considering the local covariance matrix and a
critical distance for which an extreme is significant. This critical distance has been es-
timated as the 99% quantile of the χ2 with 6 degrees of freedom [6]. Figure 7 presents
the percentage of observations with strong coexceedances (upper plot) and Maha-
lanobis distance scores above the critical value (lower plot). Strong coexceedances
are those timesteps where at least 4 variables present values above its 85% percentile
simultaneously.

This general overview allows us to detect regions where to focus.However, it also
presents some open issues: in the northern latitudes (e.g. Russia, Canada, and
Alaska), the amount of extreme residuals detected by both methods is higher to other
areas in the globe. This can be related to the fact that in northern latitudes, biosphere
variables present big changes in its variance along the year. This heteroscedastic be-
haviour overestimates the number of extremes. Additional error sources might be the
globally fixed (p, q) parameters of the ARMA model, trends in the data or issues related
to the projection error from the satellites. These issues need further investigations and
we are currently working on them.

Coming back to the historical event of 2003 in Europe, Figure 8 represents the
results obtained through both approaches over Europe for a certain timestep: 5th of
August 2003. At this time, Europe was under the extreme conditions of the hottest

11



(a)

(b)

Figure 7: (a) Percentage of strong coexceedance events (4-6 residuals extremes). (b)
Percentage of Mahalanobis distance above a critical value.

summer record since the XVI century [24]. The Mahalanobis distance represented in
Figure 8 clearly shows the pattern of an extreme event in central Europe. On the other
hand, the coexceedances are detecting 2-3 of 6 variables being extreme. However,
with the coexceedances method it can be easily seen that LSTD and H are extreme
along mid-Europe while the 2003 heat wave (Figure 9); showing that variables closer to
the atmosphere (LSTD and H) present distinctly different behavior than the biosphere
one (GPP, TER, LE).

Moving to another historical event; during March 2012 one of the greatest heat
waves in North America was recorded [8]. Over the Great Lakes region all temperature
records were broken with extremely warm temperatures for that area and month of the
year. Figure 10 shows the results of our approach by the middle of March in North
America. Both methods clearly detect this event with strong coexceedances and high
Mahalanobis distance scores.
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(a)

(b)

Figure 8: (a) Coexceedances on 5th of August 2003. (b) Mahalanobis distance on 5th

of August 2003.

1.3 Future Work: Attribution scheme

The presented methodology has been implemented in such a manner that it is easy
to establish an attribution scheme later on. Although there are some open issues, we
already have a pretty well defined idea on how we want to proceed.

Once we have defined the extreme events, either by means of coexceedances, Ma-
halanobis distance, or even a combination of both, we plan to implement a multinomial
logistic regression model to estimate their occurrence. This kind of models allow us to
introduce explanatory variables as covariates. We plan to use atmospheric and tem-
poral variables as explanatory variables to model multivariate biosphere extremes. By
means of statistical tests such as Akaike information criterion (AIC) or Bayesian in-
formation criterion (BIC) we could decide which covariates are worth to be added in
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Figure 9: Variables coexceeding on 5th of August 2003. Grey scale-up to 3 unclassified
variables being extreme, purple pixels-extreme LSTD and H and blue pixels- extreme
GPP, LE, TER and H.

the model. Additionally we will also test whether the inclusion of widely known climate
indices such as ENSO, NAO, SOI, etc is significative.

1.4 Conclusions

We have presented a method to detect abnormal events in multivariate time series. The
basic idea behind our approach is that an anomaly is a point in the time series which
cannot be well represented by a statistical model that describes the entire time series.
This assumption allowed us to investigate the occurrence of extreme observations in
biospheric variables with two approaches: coexceedances and Mahalanobis distance
of extremal residuals. Both methods present advantages and disadvantages that make
them useful and complementary. The coexceedances approach is a method very easy
to interpret and allows a direct explanation of the detected extremes. The Mahalanobis
distance is able to provide more information about the multivariate joint distribution by
losing the direct information about which are the variables being extreme.

Both methods tested are able to detect historical events like the European Heat-
wave from 2003 or the so-called Meteorological March Madness from 2012 in North
America.

Multivariate methods allow detections not appreciable from univariate methods; like
the different behavior of variables closer to atmosphere compared to those closer to
biosphere shown in the 2003 heat wave.

During the development of the proposed methodology and the consequent results,
we faced several open questions that needed further investigation. We keep on working
on these aspects to improve our methods and make them more robust and general.
Therefore, our near future work in this direction will be focused on the following points:

• i) Resolving the overestimation of extremes in the northern latitudes;
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(a)

(b)

Figure 10: (a) Coexceedances on 13th of March 2012. (b) Mahalanobis distance on
13th of March 2012.

• ii) A better threshold selection needs to be done to make both methods compa-
rable (Task 5.3 - Incremental novelty detection, automatic dataset cleanup and
going from novelty scores to direct detections);

• iii) Regionalization into areas with similar behavior. Consequently, adapting spe-
cific ARMA models for each similar region (Task 5.3 - Incremental novelty detec-
tion, automatic dataset cleanup and going from novelty scores to direct detec-
tions);

• iv) Attribution scheme. This step is crucial to understand the processes causing
abnormal events (Task 5.4 - Attribution Scheme).
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2 Advances in the Maximally Divergent Intervals method
for Anomaly Detection

The early prototype of our novel Maximally Divergent Intervals Algorithm for Anomaly
Detection described in Deliverable 5.1 yielded promising results, but still suffered from
some major shortcomings:

• Estimating the distribution of the data within each possible interval and computing
the Kullback-Leibler (KL) divergence was computationally demanding and pre-
vented the method from being used on large-scale data sets.

• The KL scores were systematically higher for smaller intervals, particularly in
combination with the assumption of Gaussian distributions, leading to a bias to-
wards smaller detections.

• Both distribution models proposed were based on the assumption of independent
samples, which does almost never hold when working with real data.

We have tackled all those problems and implemented some improvements to the
algorithm which will be described in the following sections. We have also tested the
performance of the method on both synthetic data and real climate data, obtaining very
promising results.

2.1 Improvements and extensions to the MDI algorithm

2.1.1 Efficient distribution parameter estimation using cumulative sums

In Deliverable 5.1, we have proposed two different approaches for modelling the distri-
bution of the data: Kernel Density Estimation (KDE) and multivariate Gaussian distri-
butions.

For estimating the value of the probability density function pI(xt) at time t in the
time series (xt)

n
t=1, xt ∈ RD with Kernel Density Estimation a sum over all samples in

the time series has to be evaluated:

pI(xt) =
1

n

n∑
t′=1

K(xt, xt′), (2)

where K(x, x′) is a kernel function. Evaluating this sum for every time step in every
interval being scored is both time-consuming and redundant. We were able to speed
up this computation significantly by using cumulative sums [26]:

Ct,t′ =
∑

1≤t′′≤t′
K(xt, xt′′). (3)

This allows us to evaluate the empirical KL divergence for a given interval I =
{t|a ≤ t < b} in linear time:
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KLI,Ω =
1

|I|
∑
t∈I

log

(
pI(xt)

pΩ(xt)

)
=

1

|I|
∑
t∈I

log (Ct,b−1 − Ct,a−1)− log (Ct,n − Ct,b−1 + Ct,a−1) .

(4)

Similarly, cumulative sums can also be used to speed up the estimation of the mean
vector and covariance matrix of a Gaussian distribution.

2.1.2 Constant-time evaluation of the KL divergence for Gaussian distributions

Using the assumption of normally distributed data, additional speed can be gained by
using a closed-form solution for the KL divergence given by [11]:

KL (pI(xt), pΩ(xt)) =
1

2
( trace

(
S−1

Ω SI

)
+ (µI − µΩ)

T S−1
Ω (µI − µΩ)

+ log |SΩ| − log |SI | −D).
(5)

In combination with the cumulative sums approach described above for estimating
the parameters of the distributions this allows us to compute the anomaly score of a
given interval in constant time.

2.1.3 Interval Proposals

Despite the improvements described above, evaluating the KL divergence for all inter-
vals with size between a given minimum and maximum may still take a long time if
the time series contains many measurements and the range of possible interval sizes
is large. To achieve a further significant speed-up, we propose an interval proposal
method which proposes interesting intervals to the algorithm for in-depth analysis. This
way no time is wasted for checking a large number of uninteresting intervals.

The proposals are based on a fast point-wise anomaly detection method, for exam-
ple Hotelling’s T2 [13] or point-wise Kernel Density Estimation. Both methods return
an anomaly score for every time step. We then approximate the gradient of those
scores using a simple convolution to eliminate regions of a constant degree of anoma-
lousness. The peaks of these point-wise gradient scores are extracted by a simple
threshold operation and all intervals whose start and end point is one of those peaks
and whose size is between the given limits are proposed to the algorithm for scoring
by the KL divergence.

In our experiments, which will be described later, this led to a speed-up of several
orders of magnitude while not jeopardizing the accuracy, since the proposal method
acts as a high-recall retrieval system.
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2.1.4 Time-Delay Embedding

In order to mitigate the assumption of independent time-steps we apply Time-Delay
Embedding [18, 15] as a preprocessing step to integrate the attributes of some previ-
ous time steps into each single time step as context:

x′t = (xt, xt−T , xt−2T , ..., xt−(k−1)·T ), (6)

where k is called the embedding dimension, i.e. the number of previous time-steps
considered, and T is called the time lag, i.e. the distance between each two consecu-
tive time steps. This idea is illustrated in Figure 11.

The optimal value for the parameters k, T highly depends on the data itself. Both
parameters are not independent, since their product can be seen as the size of the
window of relevant context. But a high value of k results in a high-dimensional time
series and, thus, increases computational complexity. On the other hand, a high value
of T is more likely to skip some important context information. After obtaining a good
estimate for the size of that window, one can choose k and T to make a trade-off be-
tween computational complexity and accuracy.

We have investigated various methods to find a good estimate for the context win-
dow size based on experiments with our synthetic data set described in section 2.2.1:

Rank Aggregation We fix the value of T and apply the MDI algorithm for several dif-
ferent values of k. We then aggregate the resulting rankings of intervals into a
single ranking using Approximate Kemeny Aggregation which prefers one interval
over another one if the majority of rankers (here: embedding dimensions) does
so.

Length Scale We fit a Gaussian Process with a squared-exponential correlation func-
tion to the data and determine the size of the context window based on the char-
acteristic length scale of that process (i.e. the standard deviation of the correla-
tion function). The characteristic length scale can be seen as a measure for how
distant two samples have to be to not influence each other significantly.

Mutual Information According to Tobler’s First Law of Geography, ”everything is re-
lated to everything else, but near things are more related than distant things.”
Thus, mutual information between a sample and another sample T steps away
usually decreases continuously, except for seasonal effects. Hence, instead of
searching for local minima of mutual information, we determine an appropriate
size of the context window based on the speed of the decrease (i.e. the gradient)

Figure 11: Illustration of Time-Delay Embedding with k = T = 3
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of mutual information with increasing distance. We select the first distance where
the gradient is below a pre-defined threshold as the context window size.

In our experiments, all three methods performed better than setting the parameters
to a fixed value for all time series. Rank Aggregation performed best, but is infeasible
in practice since it involves multiple expensive runs of the entire algorithm and is not
compatible to our interval proposal method described above. Determining the context
window size based on the decrease of Mutual Information gave comparable results
and is faster than the Length Scale method, which performed worse in addition. But
unfortunately, the threshold involved with the Mutual Information method again seems
to be application-dependent.

Thus, optimization of the time-delay embedding parameters will be an area of on-
going research.

2.1.5 An unbiased variant of the KL divergence

We have theoretically analyzed the distribution of the KL divergence under the as-
sumption of Gaussian distributions applied to time series of white noise and found a
systematic bias towards intervals of smaller size, as can be seen in Figure 12.

This bias can be corrected by a simple multiplication of the divergence with the
length of the interval in order to reward longer detections. This approach also is theo-
retically justified, since it can be shown that the resulting distribution of KL divergence
scores on white noise is independent from the length of the intervals and follows a χ2-
distribution which depends on the number of attributes only [14]. This insight can also
be used to normalize the obtained scores regarding the number of attributes in order
to make them comparable to scores obtained on different data.

Figure 12: Empirical and theoretical mean KL divergence on white noise under the
assumption of Gaussian distributions depending on the interval length. The theoretical
mean is 1

m
− 1

n−m , where m is the length of the interval and n is the length of the entire
time series.
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Figure 13: First plot: An exemplary time series with a diurnal seasonal pattern. Second
plot: The power spectrum of that time series with an automatically determined thresh-
old and all frequencies above that threshold marked by dots. Plots 3-5: Comparison of
different deseasonalization methods applied to that time series.

2.1.6 Deseasonalization

Periodical patterns are very common in real data, particularly in climate data, which
exhibits seasonal influences. We have implemented and tested several methods to
remove this seasonality from such a time series:

Z-Score Partition the time series into seasonal groups (xt·S+p)
n/S
t=1, p = 0, ..., S − 1,

where S is the number of seasonal groups, and normalize each group separately.
This method is very common in literature, but is also known to over-emphasize
small deviations in groups of rather low overall variance. In addition, prior knowl-
edge about the number seasons is required.

OLS Deseasonalization Model the time series according to xt = a0+b0·t+aj+bj ·t+εt,
where a0 is an overall offset, b0 · t is a global linear trend, aj is the offset specific to
the season j which time step t belongs to, bj · t is a linear trend of that seasonal
offset and the residual εt is the deseasonalized time series. The coefficients can
be estimated by ordinary least squares (OLS) regression. This method does also
require prior knowledge about the number and length of each season, but is more
flexible regarding the association of the time steps with the seasons. This does
also allow modelling multiple overlapping seasonal effects.

Fourier Transform Remove strong frequencies from the Fourier spectrum of the time
series. This method can handle multiple overlapping seasonal effects and does
not require any prior knowledge about the seasonality. In turn, it may result in
artefacts, especially at the borders, due to the hard removal of frequencies and
the periodicity assumption of the Fourier transform.
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Figure 13 shows an example of the different deseasonalization methods applied to
a time series with a diurnal seasonal pattern.

During our experiments on real data we have found that none of the methods gen-
erally performs better than the other ones. Which one is suitable to assist anomaly
detection again depends on the data and the application. Moreover, for some applica-
tions removing the seasonality may even be disadvantageous (see section 2.2.3 for an
example).

2.1.7 Implementation details

The entire algorithm, including KDE and Gaussian distribution models, interval pro-
posals, time-delay and deseasonalization, has been implemented in a very efficient
fashion in a C++ library called libmaxdiv. Bindings for Python are available to make
the functionality of the library easily accessible.

The algorithm has been parallelised so that multiple intervals can be analysed con-
currently on machines with multiple processors. But even without parallelisation the
C++ implementation is about 50 times faster than the pure Python implementation of
the algorithm which was available as of Deliverable 5.1.

When working with high-dimensional spatio-temporal data, time is not the only con-
straint, but memory limitations will become a problem too. Two particularly critical is-
sues regarding memory consumption have been identified and solved using techniques
described in the following:

Partial Cumulative Sums Time-Delay usually lead to very high-dimensional data. For
the efficient computation of the covariance matrices needed by the Gaussian
model, the number of values which have to be stored for each sample in the ten-
sor of cumulative sums is quadratic in the number of dimensions. But since our
algorithm scans through the possible intervals linearly, we do not need access
to that entire tensor at once. Instead, we limit its size to a few gigabytes and
compute a partial cumulative sum over a subset of time steps until that size is
reached. Whenever a sum over samples not covered by that partial cumulative
sum is requested, it will be dismissed and a new partial cumulative sum starting at
the beginning of the current range will be computed. This way, memory consump-
tion is always under control, while speed is not significantly impaired. Moreover,
this approach mitigates numerical issues like round-off errors and cancellation
which would arise from the use of large cumulative sums.

Concurrent Non-Maximum Suppression Normally, during the scan over all possible
intervals our algorithm stores the scores of the intervals in a list. Afterwards, this
list is sorted and non-maximum suppression is applied to get non-overlapping in-
tervals only. But again, the number of possible intervals grows polynomially when
working with spatio-temporal data. For example, during our experiment on the
CoastDat dataset described in section 2.2.3, which was not even spatial, 90% of
the memory (around 0.5 GB) have been occupied by the list of interval scores.
Thus, non-maximum suppression in that form is not feasible for large datasets.
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To solve this issue we have implemented an approximation which we call concur-
rent non-maximum suppression. Instead of collecting all scores before starting
to eliminate local non-maxima, this algorithm maintains a sorted list of detections
and applies non-maximum suppression for each detection at the moment it is to
be inserted into the list: if there is already an overlapping detection with a higher
score, the new detection will be dismissed; if there is not, it is inserted at the
appropriate position in the list and all overlapping detections with a lower score
will be removed from the list. As opposed to original non-maximum suppression,
the output of this algorithm depends on the order of insertion. In turn, it con-
sumes much less memory and does even run an order of magnitude faster than
original non-maximum suppression, which took several minutes for the CoastDat
experiment.

2.2 Experiments

2.2.1 Synthetic Data

For a quantitative evaluation of our algorithm, we have created a data set of synthetic
time series sampled from a Gaussian Process. Different types of anomalies have been
injected into each of these time series: a simple shift of the mean value, a change
of amplitude, a change of frequency and a replacement of a random part of the time
series with a part of another one, interpolating them at the borders to make a smooth
transition. For each anomaly type there is a univariate as well as a multivariate test
case. In case of the mean-shift anomaly we have also set up a test case where 5
anomalies are injected into a single time series. There are 11 test cases in total, each
with 100 different time series of length 1000. The size of the anomalies ranges be-
tween 2% and 10% of the length of the time series.

Note that this test set would have been intractable for our prototype implementation
of Deliverable 5.1, but can be processed easily by the new efficient implementation.

We compare the performance of our algorithm to three baselines:

Hotelling’s T2 The Mahalanobis distance of each sample to the mean value.

Point-Wise Kernel Density Estimation Use KDE to estimate the probability density
function p(xt) and score each sample xt by its unlikelihood 1− p(xt).

Gaussian Mixture Models Fit a GMM with 2 components to the data, denote the com-
ponent with the higher weight as the nominal component and the other one as
the anomalous component and score each sample by its posterior probability for
belonging to the anomalous component.

All these baselines are point-wise anomaly detection methods, but we obtain inter-
val detections by grouping contiguous detections based on multiple thresholds.

We use Average Precision as evaluation criterion, since it is more suitable for de-
tection tasks than AUC.
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(a) Comparison of the performance of the MDI method with the baselines on the synthetic data
set.

(b) Comparison of the performance of the
MDI algorithm with different Time-Delay Em-
bedding parameters (without any embedding,
with fixed parameters and with automatically
optimized parameters).

(c) Comparison of the effect of different pro-
posal methods on the performance of the MDI
algorithm.

Figure 14: Evaluation results on the synthetic data set

As can be seen from the results of the first experiment shown in Figure 14a, our
method, particularly with the Gaussian model, clearly outperforms the baselines in
almost all test cases as well as regarding overall performance. Interestingly, the Gaus-
sian method with the original KL divergence performed better than the unbiased variant
in the majority of the test cases, but fails if there are multiple anomalies. In such a case,
the unbiased version does a better job, which is also the case for most of the experi-
ments with real data we describe in the following.

For the first experiment, we have fixed the Time-Delay Embedding parameters to
k = 6, T = 2, which we have empirically found to be a good value for this dataset.
Figure 14b shows that the automatic optimization of the context window size based on
mutual information as described in section 2.1.4 works equally well without any manual
tuning.
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Interestingly, the use of the interval proposal method described in section 2.1.3
does not only lead to a significant gain in speed, but also in performance, as can be
seen from Figure 14c.
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Figure 15: Upper plot: Boxes in colors represent historical hurricanes Isaac, Rafael
and Sandy and grey shaded areas MDI Gaussian detections. The false-positive right
after Isaac might be related either to a local storm or to the reminiscences from hurri-
cane Leslie passing these days by Bermudas. Lower plot: Trajectories of the historical
hurricanes detected (from left to right: Isaac, Rafael and Sandy ) and location of the
buoy database used (red arrow).

2.2.2 Hurricane Detection

Meteocean data (significant wave height, Hs, wind speed, W and sea level pressure
SLP ) in a location near the Bahamas in the Atlantic Sea (23.838° N, 68.333° W) were
used in these tests. Six months of hourly data, from June 2012 until November 2012
were extracted from the National Data Buoy Center from the NOAA2. This period corre-
sponds to the Atlantic hurricane season, which in that year was specially active with 19
tropical cyclones (winds above 52 km/h) where 10 of them became hurricanes (winds
above 64 km/h). In contrast to our synthetic dataset, the anomalies have an effect on
multiple variables at once.

2http://www.ndbc.noaa.gov/
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Figure 16: Heatmaps during the center of the top 5 detections on the CoastDat dataset.
The red frame spans the region considered in this experiment.

We have applied the MDI Gaussian method to these three variables and compared
the results with the historical hurricanes at Bahamas (Figure 15). The boxes in color
represent the official duration of the three main events of that season that passed near
our location, hurricanes Isaac, Rafael and Sandy respectively. Grey shaded areas
represent the MDI intervals detected by the model. Note that in general the ground-
truth areas are larger than the detections, because they span the entire lifetime of the
hurricane and not just its presence at the Bahamas, see Figure 15.

2.2.3 Detection of North Sea Storms

Next, we tried to apply our method to a large-scale data set in order to detect winter
storms over the North Sea: the coastDat-1 hindcast of various marine climate variables
in a region over the southern North Sea over 50 years from 1958 to 2007, sampled
hourly, which leads to approximately 450,000 time steps [28]. We use the variables
Wind Speed, Significant Wave Height and Mean Wave Period and consider the area
between 53.9° N, 0° E and 56° N, 7.7° E. Since cyclones and other storms are usually
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large enough to span the entire region, we aggregate all values in that area by taking
their mean to obtain a non-spatial time series. We then run a full scan over all intervals
of size between 12 and 72 hours using the unbiased Gaussian method with a Time-
Delay Embedding of k = 3, T = 1 to obtain the top 50 detections.

To assess the results we have compiled a database of 89 historic North Sea storms
from several sources. Matching the detections of the algorithm against that database
exposed promising results: 28 out of the top 50 detections (7 out of the top 10) can be
associated with historic storms. We have manually inspected the remaining 22 detec-
tions and found that almost all of them are north sea storms as well, which we just do
not have in our rather small database. Only 4 of them are not storms, but the opposite:
they span times of extremely calm sea conditions with nearly no wind and very low
waves, which is some kind of anomaly as well.

Figure 16 shows a heatmap of the three variables under consideration during the
middle of the detected time-frame for the top 5 detections.

Using the interval proposal method described in section 2.1.3 instead of a full scan
enables us to process this entire large time series in less than a second without chang-
ing the top 10 detections significantly.

We have also repeated this experiment after applying Z-Score deseasonalization,
but found it to be neither needed nor useful for the detection of North Sea storms in this
scenario. Since such storms are quite common during the winter, but very uncommon
during the summer months, deseasonalization would emphasize summer storms.

2.3 Preliminary tests with BACI data

After we have extensively tested our algorithm with synthetic and real data from differ-
ent institutions outside the project, we are ready to start testing it with data provided by
other partners of the BACI consortium.

2.3.1 Albedo and reflectance

We have used albedo and reflectance data from MODIS Terra and Aqua covering from
2001 until 2015. From these variables we have two locations: a 9x9 pixels area around
the Hainich FLUXNET tower in Germany (51.0792° N, 10.4530° E) and another 9x9
pixels area in Somalia (6.0° S, 47.05° E). These data were developed within WP 2.

In both locations we have analyzed separately the 3 albedo measurements: visi-
ble (albedo vis), near infrared (albedo nir) and short wave infrarred (albedo swir) and
6 from the 7 bands of surface bidirectional reflectance (refl b1 to refl b7). Band 6 in
MODIS collection presented some issues and we have decided to remove it during
these tests.

For the tests performed in each location we have used the following settings to
extract the 10 most divergent intervals.
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• Divergence model used: Kullback-Leibler

• Distribution model for the distribution: Gaussian with full covariance.

• Minimum length of the intervals: 10 timesteps.

• Maximum length of the intervals: 120 timesteps.

• Number of events extracted: 10.

• Preprocessing to the time series: Standarization.

• Time-delay embedding dimension: 3.

• Search strategy: full scan.

• Overlap threshold: 0%.

We have reduced the spatial dimension by estimating the mean behavior of each
variable along the 81 points that conform the 9x9 spatial grid. This way he have ob-
tained a unique time series for each variable to which apply our method.

Somalia Figure 17 upper plot represents the 10 most divergent intervals in the albedo
measurements (albedo vis, albedo nir and albedo swir) for the analyzed area in Soma-
lia. The lower plot represents the uncertainties associated to these albedo estimations
and as it can be seen they have very low values.

In Figure 18 are depicted the 10 most divergent intervals in the reflectance mea-
surements (refl b1 to refl b7 without refl b6) for the same area in the upper plot and
their uncertainties in the lower one.

Figure 17: Somalia - Top 10 albedo intervals (upper plot) and albedo uncertainties
(lower plot).

Table 3 summarizes all the events detected for both data sets in Somalia.
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Figure 18: Somalia - Top 10 reflectance intervals (upper plot) and reflectance uncer-
tainties (lower plot).

Table 3: Somalia - Top 10 intervals details.

Albedo Reflectance
Start End Score Start End Score
2001-04-10 2001-07-20 246.41 2012-06-06 2012-08-12 334.74
2012-06-07 2012-07-22 240.05 2001-04-11 2001-07-21 299.25
2001-12-31 2002-04-30 155.48 2011-04-28 2011-08-02 250.94
2001-01-07 2001-04-10 145.39 2006-09-30 2006-12-06 246.84
2013-05-17 2013-08-02 138.62 2013-04-18 2013-08-10 216.88
2001-07-21 2001-11-13 131.1 2006-05-05 2006-07-22 200.57
2006-05-10 2006-09-04 129.32 2008-05-02 2008-08-07 198.84
2003-10-25 2004-01-28 126.97 2005-04-11 2005-07-21 198.73
2011-06-10 2011-08-04 123.91 2005-09-24 2005-12-04 192.83
2005-10-01 2005-12-04 115.75 2002-04-09 2002-08-03 192.27

Hainich Analogous to the previous figures, Figure 19 shows the events detected in
the albedo measurements for the Hainich area together with its uncertainties. Figure
20 shows the 10 most divergent intervals in the reflectance measurements (refl b1 to
refl b7 without refl b6) for the same german area in the upper plot and their uncertain-
ties in the lower one.

In this case, most of the events detected correspond to winter. During winter, albedo
and reflectance estimations are less stable; which can be also seen in the values of
its uncertainties. One reason for that is that during autumn-winter-spring there are
more cloudy days and so much less satellite observations. This can lead into negative
values. Although this is not physically possible it is mathematically plausible with the
estimation methods used. Our Maximally Divergent Intervals method in its current ver-
sion is not able to take into account the uncertainty associated to the data. But we are
currently working on this, with an implementation that allow us to deal with gaps in the
time series. This will let us discard data that present very high uncertainty.
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Figure 19: Hainich - Top 10 albedo intervals (upper plot) and albedo uncertainties
(lower plot).

Figure 20: Hainich - Top 10 reflectance intervals (upper plot) and reflectance uncer-
tainties (lower plot).

To summarize, Table 4 compiles all the details for the events detected in boths
albedo and reflectance measurements in Hainich.

2.4 Conclusions

In this section, the advances developed for the Maximally Divergent Intervals algorithm
were presented. These advances have been specially focused on a more efficient
computation of the Kullback-Leibler divergence and a better identification of the inter-
vals in order to be able to deal with larger datasets.

We have carried out several experiments with artificial and real data. Additionally
we have started to test data developed within the BACI project by other partners.
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Table 4: Hainich - Top 10 intervals details.

Albedo Reflectance
Start End Score Start End Score
2005-12-17 2006-04-16 520.81 2005-12-15 2006-04-14 740.93
2008-02-10 2008-05-26 447.96 2001-09-16 2002-01-14 692.96
2001-10-07 2002-02-04 407.62 2008-11-18 2009-03-18 580.77
2012-12-25 2013-04-24 407.11 2012-12-21 2013-04-20 571.46
2001-01-01 2001-04-29 319.36 2008-02-13 2008-06-12 513.86
2004-11-01 2005-03-01 311.48 2002-10-05 2003-02-02 490.89
2002-11-05 2003-03-05 300.01 2014-11-22 2015-03-22 486.71
2003-12-11 2004-03-27 289.25 2010-11-05 2011-03-05 464.61
2010-11-07 2011-02-22 286.83 2009-11-27 2010-03-27 463.28
2009-11-26 2010-03-10 281.65 2001-01-01 2001-05-01 439.91

Our near future work in this direction will be focused on the following points:

• i) Spatio-temporal intervals detection (Task 5.3 - Incremental novelty detection,
automatic dataset cleanup and going from novelty scores to direct detections);

• ii) Development of an Graphical User Interface (Task 5.3 - Incremental novelty
detection, automatic dataset cleanup and going from novelty scores to direct de-
tections);
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3 Conclusions

This report refers to the works done related to the Task 5.2 - Near-real-time processing
of non-normalized time series and large-scale adaptations within the Work Package 5
- Synthethic Index and Attribution Scheme: the BACIndex.

The works done during the last period can be divided into two main parts:

We have been working on the development of a methodology to detect extreme
events based on autorregressive models. We have tested two approaches, one based
on coexceedances above a certain threshold and another one based on a distance
metric of the joint distribution of the variables. These two methods have been applied
to biosphere variables at two scales: locally and globally.

The second main focus of our work during this last period was the improvement of
our Maximally Divergent Intervals method already presented in Deliverable 5.1. We
have achieved better speeds in the computation time and a more efficient evaluation
of the Kullback-Leiler divergence. This allow us to deal with larger databases. Artificial
and real data have been tested. Within those experiments we include some initial tests
with data provided by other partners of the BACI consortium.

This deliverable states the successful accomplishment of Task 5.2.
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