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Abbreviations 
ARMA  Autoregressive Moving Average 

BACIndex Biosphere Atmosphere Change Index 

CL  Cropland 

ESDC  Earth System Data Cube 

ESS  Earth System Science 

FAO  Food and Agriculture Organization 

FO  Forest 

GL  Grazingland 

GPP  Gross Primary Productivity 

HANPP Human Appropriation of Net Primary Production 

LE  Latent Energy 

LSS  Land System Science 

NEE  Net Ecosystem Exchange 

NPP  Net Primary Production 

SH  Sensible Heat 

TER  Terrestrial Ecosystem Respiration 

1. Summary 

Deliverable 6.3 presents results of a data-driven assessment of extreme events in biosphere 
and land use dynamics that is a joint collaboration across a number of BACI WPs and 
strongly builds upon BACI developments and innovations. This work provides an 
interdisciplinary effort to study processes and extremes in the biosphere and land use sector 
jointly, which in the past has been tackled by different research communities separately 
(Earth System Science vs. Land System Science). We integrate biospheric (WP2) and land 
use data streams (WP7), and adopt a data-driven (machine learning based) approach 
developed in WP5 to detect biospheric and land use extreme events across Europe and 
Africa. We characterise detected extreme events by using approaches developed in WP6 
and synthesize the results. We will expand the work to global scale and submit the results as 
a scientific paper in mid/late-2019.  

2. Introduction 

Biospheric processes and land use are key components of the Earth system and its 
dynamics. Extreme events in both, the biosphere and land use, system can strongly alter the 
functioning of the Earth system and affect humans as much as the natural environment. 
Such events are often related to climatic extremes (e.g. droughts, heatwaves and floods); 
but also to direct human-induced dynamics. Human-induced dynamics include large scale 
changes in the extent of land-use, like forest conversion (Hansen et al., 2013), or alterations 
in the intensity of land use, like harvest changes, triggered by e.g. changes in land use 
policies, humanitarian crises or political dynamics (Lesk et al., 2016, Seidl et al., 2017). 
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While extreme events are often key archetypes (syndromes) of ongoing changes, their 
characteristics and impact are not well understood. In particular, tackling sustainability 
challenges that relate to different areas, including climate change, land-use, as well as loss 
of biodiversity and challenges to food security, is intricate and requires understanding of the 
complexity of extreme events and their interrelation among the different Earth system 
components. Such an understanding is only slowly emerging in the last decades. 

Traditionally, the study of processes and extremes in the biosphere and land use sector 
have been tackled by different research communities. Earth system science (ESS) and 
related efforts in climate and vegetation modelling has put its major efforts to better 
understand the functioning of system Earth and its natural processes. While the impact of 
human societies as part of the Earth system Science is only recently staring to be 
implemented as direct links with land use and land management processes (Pongratz et al., 
2018). Land system science (LSS), in contrast, is an interdisciplinary endeavour that aims at 
understanding the drivers and impacts of land use and its change over time (Rindfuss et al., 
2004, Turner et al., 2007, Verburg et al., 2016). It originates in studies of land change 
processes and social-environmental relationships, as either a driver or a consequence of 
changes in the Earth system.  

The study of extreme events is an important strand in both research communities.  The 
communities mostly operated on distinct terms and focus on certain types of events from 
their specific and selective perspective. While this has the advantage of detailed, in depth 
understanding of specifics, the from either a LSS or ESS perspective, the risk of omitting or 
under representation of critical events is high. In particular, it does not allow to understand 
the entirety or complexity of the interrelations between socioeconomic and natural dynamics 
in relation to extreme events. Currently, mostly hypothesis or theory-driven approaches 
prevail, that try to understand the impact of certain changes in climate on land use and vice 
versa  (Meyfroidt et al., 2018). Such approaches have allowed us to gain important 
knowledge about the Earth systems and evolved LSS and ESS to where it is now. The major 
drawback of such approaches, however, is that the view is restricted to the hypothesis and 
can be biased by presumptions. It is also unlikely to identify events that are so far unknown.  

Recently, ESS is exploring new avenues by moving away from physical process models to 
more data-driven approaches that are able to digest and make use of the increasing amount 
and diversity of available data (Reichstein et al., 2019). Such data science developments 
allow to analyse new multivariate data sources and to take a more independent perspective 
on dynamics of the Earth System.  This should allow to take a new look into extreme events, 
their drivers and interrelations in both the biosphere and land use system, and help to 
explore some of the unknown unknowns we might have missed so far in that context. 

Data science opportunities are grounded in new and more rich data sources from various 
disciplines and methods  emerged recently (Erb et al., 2016, Erb et al., 2017, Kuemmerle et 
al., 2013, Reichstein et al., 2019). The biosphere has been continuously monitored at a high 
temporal resolution by a set of variables based on the integration of remote sensing and in 
situ information  (Beer et al., 2011, Jung et al., 2010) for the last decade. Now new global 
high spatial-temporal resolution and harmonised earth system data increasingly become 
available. These datasets, when systematically combined with census data on land use (Erb 
et al., 2007, Goldewijk et al., 2017) allow for the reconstruction of annual spatially explicit 
time series of changes in the extent individual land uses.  
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The analytical framework Human Appropriation of Net Primary Production (HANPP) goes 
beyond accounts of changes in the extent of land uses, by systematically adding information 
on productivity in terms of net primary production and land-use intensity of agricultural and 
forestry production. HANPP is an accounting framework that allows to integrate and map 
information on the extent and land-use intensification of land-use categories such as 
forestry, cropland, grazing land, infrastructure and wilderness (Erb et al., 2009, Haberl et al., 
2007, Haberl et al., 2014). It integrates data on biomass harvest from census statistics, at 
the global level mainly from Food and Agriculture Organization (FAO), with information on 
Net Primary Production (NPP) derived from dynamic vegetation models and, by 
systematically discerning NPP fluxes of the potential vegetation of the actual vegetation and 
the NPP remaining in land ecosystems after harvest, provides a metric for the human 
domination of ecosystems (Vitousek 1997). HANPP accounts in long time series allow to 
scrutinize and quantify the drivers of land use change (Gingrich et al., 2015, Krausmann et 
al., 2013). In particular, the HANPP framework allows for a systematic reconstruction and 
analytical separation of effects resulting from changes in land-use extent and of land-use 
intensity. The newly available, annual land cover datasets (ESA 2017)   provide the 
opportunity to disentangle changes driven by natural changes (via NPPpot) and land use, 
and separates land use drivers in (i) land cover change and (ii) land management (intensity) 
change. 

To detect extreme events anomaly detection algorithms are commonly used. We define 
extreme events as an anomaly in the multivariate dataset. An anomaly in the multivariate 
dataset is defined as a spatial-temporal part of the data cube that differs with respect to the 
mean and variance from the normal rest of the multivariate data cube. A number of 
algorithms for multivariate anomaly detection are available, but only a few have been applied 
in the context of ESS applications and even fewer in LSS (Flach et al, 2017).  A review of 
related data driven methods is given in (Flach et al., 2017, Gauche Garcia et al., 2018, 
Reichstein et al., 2019) 

Here we present a workflow to automatically detect extreme event patterns in multivariate 
Earth System data streams and Land System data streams. We analyse their distribution 
and drivers. We aim to answer following research questions: 

1. Where are extreme events in the biosphere and land use system located in space 
and time and what drives them? 

2. How to disentangle extreme events in the land system driven by natural processes 
and driven by socioeconomic processes? 

3. Are there archetypes of the interrelation of biospheric and land use extreme event? 
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3. Data and methods 
Figure 1 illustrates the proposed methodology detect and analyse biospheric and land use 
extreme events. 

 

 
Figure 1. Flow chart of the proposed methodology to detect and analyse biospheric and land use 

extreme events. 

3.1 Data 

3.1.1 Biospheric variables 

Data from the Earth System Data Cube (ESDC) developed within the ESDL project have 
been used as the primary source of ESS data for this study. The ESDC comprises 
spatiotemporal data consisting of: time, latitude, longitude and multivariate Earth 
Observations. The version used in this study covers the period from January 2002 to 
December 2010 with 8 daily observations and a spatial grid with a resolution of 0.25 degree. 
5 variables measuring the terrestrial biosphere activities were used: Gross Primary 
Productivity (GPP), Latent Energy (LE), Net Ecosystem Exchange (NEE), Sensible Heat 
(SH) and Terrestrial Ecosystem Respiration (TER), which were kindly provided by the 
FLUXCOM initiative (Tramontana et al. 2016). 

3.1.2 Land use variables 

Land use data have been compiled from the FAO dataset (FAOSTAT 2018) and comprise 
information for cropland, grazing land (permanent and non-permanent pastures as well as 
other grazed ecosystems (Erb et al., 2007), forests and infrastructure areas. Using a 
downscaling approach that builds upon data on land use (Hyde 3.2), anthromes (Ellis et al. 
2011) and potential vegetation (FAO 2001, Olson et al., 2001, Ramankutty & Foley 1999), 
national data were allocated to a 5 arc minutes grid. For all these land use types, information 
is available on the extent (km² or percent per grid cell) as well as on carbon flows 
(gC/m2/yr). Harvest is, in line with the accounting framework HANPP, defined as the sum of 
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annual harvested primary crops, secondary compartments and includes biomass fractions 
lost in the course of harvest (residues, felling losses, below ground biomass). The data has 
an annual temporal resolution and span the years 2002-2010. Figure 2 depicts the six land 
use varibles for the year 2002. 

Table 1. Biospheric and land use variables available for the period 2002 – 2010. 

Variables  Temporal 
resolution 

Spatial 
resolution 

Definition & unit

Biospheric  GPP  8 daily 0.25 degree [gC m-2 day-1]; Carbon uptake by plants via photosynthesis 

 NEE  8 daily 0.25 degree [gC m-2 day-1]; Difference between amount of carbon uptake and 
release  

 LE  8 daily 0.25 degree [W m-2]; Amount of  hidden heat energy which is supplied or 
extracted to change the state of a substance without changing its 
temperature

 SH  8 daily 0.25 degree [W m-2]; Amount of heat energy exchanged by a body or 
thermodynamic system  

 TER  8 daily 0.25 degree [gC m-2 day-1]; Carbon release through autotrophic (plants) and 
heterotrophic (soil microorganisms, animals) respiration  

Land use  Harvest 
cropland 
(CL) 

annual 0.083 degree [gC/m²]; cropland harvest including residues and below ground 
fractions killed during harvest 

 Harvest 
forest (FO) 

annual 0.083 degree [gC/m²]; forest harvest including felling losses (branches, stumps) 
and below ground fractions (roots) killed during harvest 

 Harvest 
grazingland 
(GL) 

annual 0.083 degree [gC/m²]; grass harvest by livestock or mowing 

 Area CL annual 0.083 degree [% of gridcell] area of cropland, including arable land and 
permanent cropland 

 Area FO annual 0.083 degree [% of gridcell] area of forests

 Area GL annual 0.083 degree [% of gridcell] area of grazing lands (sum of permanent and non-
permanent pastures and meadows, rangelands and grazed 
(mainly open) woodlands).
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Figure 2. Land use variables used for the year 2002. See Table 1 for a description of the variables. 

3.2 Extreme event detection 

3.2.1 Biospheric extreme events 

For detecting biospheric extreme events we applied the approach developed and described 
in Gauche Garcia et al., 2018. A brief summary is provided below. The proposed 
methodology is divided into three main steps: pre-processing, feature extraction and event 
detection.  

Pre-processing: First, seasonality was removed from the 8-daily time series by subtracting 
the mean seasonal cycle and the remaining variables were normalised by subtracting its 
mean divided by its variance. This was done for all the 5 variables locally at each pixel of the 
grid. Next, the deseasonalized and normalised data was regionalized into 31 clusters of 
similar climate conditions defined by the Koppen Climate Classification (Chen & Chen 2013).  

Feature extraction: To tackle the spatiotemporal dependencies of the biosphere variables, a 
feature extraction step was applied to each time series in the grid independently. The first 
step is based on the assumption that the time series of each variable can be represented by 
an autoregressive moving average (ARMA) process, and the anomalies are those time 
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instances that are not well represented by the estimated ARMA model. The Mahalanobis 
distance (Hotelling 1947) of the ARMA models’ multivariate residuals is used as a novelty 
score. At each pixel of the grid, we have combined the residuals of the 5 variables in a 
vector x and estimated its Mahalanobis distance (Hotelling, 1947, Mahalanobis, 1936). This 
distance measure compared to other metrics has the advantage of taking into account the 
shape of the joint distribution.  

Event detection: Once the Mahalanobis distance for all the points of the grid has been 
estimated, a 95th percentile of the Mahalanobis distance distribution (all the Mahalanobis 
distance values along the entire region) was used as a threshold to detect extreme events 
and separate them from normal events. We further define extreme events as clusters with a 
minimum size of 5 pixel. 

3.2.2 Land use extreme events 

We adapted the methodology of Gauche Garcia et al., 2018 used to derive the biospheric 
events to detect land use extreme events from multivariate annual land use variables. We 
followed the three main steps: pre-processing, feature extraction and event detection.  

Pre-processing: Since we deal with annual data, deseasonalization was not needed. We 
normalized the data by subtracting its mean divided by its variance. This was done for all the 
6 variables locally at each pixel of the grid. Next, the normalised data was regionalized into 9 
clusters of similar conditions by applying a K-means clustering to the multivariate land use 
data set. 

Feature extraction: To tackle the spatiotemporal dependencies of the land use variables, a 
feature extraction step was applied to each time series in the grid independently. We first 
derived the residuals of the normalised time series and defined anomalies as those annual 
time instances that are not well represented by the distribution (in space and time) of the 
specific region (cluster). We calculated the Mahalanobis distance multivariate residuals as 
novelty score. At each pixel of the grid, we have combined the residuals of the 6 variables in 
a vector x and estimated its Mahalanobis distance. 

Event detection: Land use events were detected in the same ways as described for the 
biospheric events. Once the Mahalanobis distance for all the points of the grid has been 
estimated, a 95th percentile of the Mahalanobis distance distribution (all the Mahalanobis 
distance values along the entire  study area) was used as a threshold to detect extreme 
events and separate them from normal events. We further define extreme events as clusters 
with a minimum size of 5 pixel. 

3.3 Analysis and validation 

We separate three types of extreme events: (i) biospheric (ii) land use extreme events and 
(iii) extreme events where both, a biospheric and land use extreme co-locate. To do so, we 
first resampled the annual land use extreme event products from 0.083 degree to the 0.25 
degree spatial resolution of the biospheric extreme event products.  

3.3.1 Descriptive analysis 

We analyse the distribution of detected extreme events in terms of their area coverage, and 
we examined  the distribution of extreme events along the Europe-Africa transect. 
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3.3.2 Regional characterisation of extreme events 

We characterised key detected biospheric and land use extreme events as well as co-
located biospheric and land use extreme events. To characterise selected extreme events 
and analyse the underlying drivers we follow the procedure developed in Deliverable 6.2. We 
calculated the z-scores (Peters et al. 2002) for each of the biospheric and land use input 
variables, comparing the detected extreme event (pixel distribution) with the multi-year 
normal. The multi-year normal is defined as all pixels covering the detected area of the 
extreme event for all years (2002-2010). Excluded from this multi-year normal are (i) the 
year of the detected event itself, and (ii) all pixel of the remaining time period that were 
classified as biospheric or land use extreme event. This analysis enables us to identify 
anomalies of the different input variables. 

A comprehensive validation of the model detection biospheric and land use extreme events 
is challenging as no well-defined ground-truth events exist.  

4. Results  
4.1 Detected biospheric and land use extreme events 

Figure 3 shows the detected biospheric and land use extreme events and their spatial 
overlap for the period 2002-2010. In total, 1590 biospheric and 2025 land use events were 
detected, respectively. Figure 4 depicts the detected biospheric  and land use extreme 
events ordered by size. Figure 5 shows the annual distribution of events. Figure 6 shows the 
spatial distribution and extent of extreme events averaged over the period 2002-2010 for 
latitudinal bands across the Europe-Africa transect. 
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Figure 3. Detected biospheric (yellow) and land use (blue) and overlapping (red) extreme events for 
the period 2002-2010.  
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Figure 4. Detected biospheric (n = 1590) and land use (n = 2025) extreme events ordered by size. 

 

 
Figure 5. Annual distribution of biospheric, land use and co-locating events. 

 
Figure 6. Spatial distribution and extent of extreme events averaged over the period 2002-2010 for 
latitudinal bands across transect.  
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4.2 Regional characterisation of selected extreme events 

The characterisation of the following three detected extreme events is shown in Figure 7-10:  

 2006 Horn of Africa floods (biospheric) 
 2005 Sweden cyclone (land use) 
 2010 Russian heat wave (biospheric and land use) 

The figures show the location and type of detected extreme event (detailed map) and the 
spider diagrams visualizing the anomalies of the various biospheric and land use variables.  

 

 
Figure 7. Detected biospheric extreme event “2006 Horn of Africa flooding’s”. In November and 
December 2006, heavy rains and severe flooding during the short rain season affected the Horn of 
Africa (Somalia, Djibouti and Ethiopia), as well as north-eastern Kenya. The observed positive GPP, 
TER and LE anomalies and related negative SH and NEE anomalies can be explained by an strong 
green up of the savannah vegetation that covers most of the region (NASA 2006). None of the land 
use variables show anomalies, which can be explained by the low and extensive land use in the 
region. Furthermore, it might be possible that the land systems prevailing in this area are adapted to 
such biospheric extreme events to a certain degree; thus strong reactions in terms of area or harvest 
changes are not occurring.  
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Figure 8. Detected land use extreme event “2005 Sweden Cyclone”. In the year 2005, a land-use 
extreme event in Sweden was detected. This event was induced by an increase of wood biomass 
harvested and an increase of cropland area, combined with a decrease of grazing land area. The gain 
in forest harvest can be explained by the cyclone Gudrun, which hit Sweden on January 8th 2005. 
The deadfall resulting from this storm event can be clearly identified in the FAO harvest statistics 
(FAO 2019), as well as the cropland increase. While round wood harvest shows a more or less stable 
trend in the shown period with a significant peak in 2005, cropland areas shows a decline in these 
years (negative anomaly), with a strong opposite direction in 2005 (and a weaker peak in 2009, not 
indicated by the outlier analysis). Note: the results for co-occurring events (bottom right, “both”) may 
not be meaningful due to the low amount of pixel represented. 

 

 
 Figure 9. Harvested round wood and cropland area in Sweden (2000-2016) (FAO, 2019) 
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Figure 10: In the year 2010 several parts of the northern hemisphere were hit by a summer heat 
wave, including large areas of Russia.  The area detected shows a distinction between large areas 
showing only a biospheric signal (yellow areas in Fig. 8, mainly in the western parts) and areas 
indicating also a land-use signal (red areas in Fig. 8, mainly in the eastern parts). Some areas at the 
fringes of the extreme event are dominated by land-use anomalies (blue areas). Biospheric extreme 
events are driven by anomalies of SH, NEE, LE and GPP. These areas also show a decrease of 
harvest in cropland and forest (negative anomalies). Red areas, indicating the co-occurrence of 
biospheric and land-use extreme events show noticeable deviations in all variables but forest area 
changes. All affected land-use related variables (but area of grazing land area) present obvious 
reductions, harvest declines in all land-use categories. Also GPP, LE and TER decrease, while SH 
and LE show distinct increases. 

 

  



 

16 
 

5.Summary and next steps  
5.1 Preliminary results 

Here we, for the first time, assess land use and ecosystem extreme events at the same time 
in combination using a consistent methodology. The proposed framework follows a data 
science approach and perspective (not hypothesis-driven), and was applied to detect 
bioshperic and land use extreme events at continental scale (Europe and Africa) for the 
years 2002 – 2010. By jointly assessing extreme events in land use and biosphere allows for 
a more comprehensive understanding of the complex Earth system and its dynamics.  

The size of detected extreme events follows a typical logarithmic distribution with few large 
events and many small ones. The large majority of detect extreme events are either 
biospheric or land use and only few are co-occurring. Most large extreme events can be 
characterised well and linked to known climatic (e.g. floods, heatwave, cyclone) and socio-
economic events (e.g. harvest decrease). 

Our study shows first insights on how biospheric and land use extreme events are related 
and provides a tool to explore the unknown unknowns in linking ecosystem and land use 
change (archetypes of change). At the moment the study is conducted at annual scale which 
may prohibits the detection of some events. 

5.2 Next steps 

We aim to expand the study to global scale and submit the results as a scientific paper in 
mid/late 2019.  

As part of this a number of key methodological improvements and assessments will be done. 
First, we will improve the anomaly detection method for the land use extreme events and 
decompose the temporal signal of the land use data into trends and anomalies (see D7.4). 
Second, we will conduct a comprehensive assessment of detected events using the 
validation framework developed in WP6 (D6.1/D6.2). This will include an detailed 
assessment of the time lag of ecosystem and land use changes and vice versa. Third, we 
will study which extreme events prevail (natural, land use driven) and try to understand 
whether we can observe regional differences. Also a major part will focus on identifying key 
archetypes (syndromes) of changes. 

Beyond that study next steps should focus on producing the BACIndex globally at  near real-
time (see MS16 for pathways) to make the information actionable i.e. to address SDG 
objectives. Hereby the provision of near-real time data essential. While satellite data are 
available in near real-time, higher-level products (e.g. GPP) are not yet fully available. In this 
context, the link to the Copernicus climate and land service is important and should be 
further developed. Further, the land use data is only available at annual scale and the 
products used in this study are not yet fully mature and being improved (see D7.4).  
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