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Summary

This deliverable is dedicated to the works done within the WP5 - Synthetic Index and
Attribution Scheme: the BACIndex. WP5 is divided into 4 main tasks and this first
report refers to the first one: Task 5.1 - Time-series extension null space and GP meth-
ods and combination with spatial clustering.

The main focus of our work in this task is the analysis, comparison and develop-
ment of methods and techniques that allow for the automatic detection and location of
abnormal events in multivariate time series which is a key element towards address-
ing the issue of developing a ”Biosphere Atmosphere Change Index”. Several existent
methods and some newly developed ones have been intensively tested and their re-
sults have been compared.

This deliverable is divided into three main sections:

1. Evaluation of Novelty Detection Algorithms. In this section, a comparison
between different techniques to detect extreme events is presented. This com-
parison has been done by using an artificial dataset created in such a way that it
represents the same characteristics as real earth observation data.

2. Kernel Functions for Mixed Discrete-Continuous and Partially Observed
Time Series. Within this section, we present a set of kernel functions with poten-
tial application to earth observation data.

3. Max-Divergent Regions - A new Machine Learning Algorithm for Extreme
Event Detection. In this last section, we present a newly developed method
to detect abnormal regions or events in multivariate time series. The method is
based on maximizing the Kullback-Leibler divergence and it has been applied to
a set of real data of marine climate.

The work summarized in this deliverable represents the accomplishment of the du-
ties encompassed in Task 5.1.

3



1 Evaluation of Novelty Detection Algorithms

This section summarizes the work done comparing different methods and techniques
to detect multivariate abnormal events. A more detailed description of the methods as
well as the results obtained is intended to be submitted to a peer-reviewed journal as:
’Detecting Multivariate Events in Artificial Earth Observartion Data’- Milan Flach et al..

1.1 Artificial dataset

In order to test different methods for event detection, we have used an artificial dataset
that allowed us to have total control of the events before applying the methods to real
data. This artificial test data set was initially developed for applications of this kind by
the ESA STSE project ”Coupled Atmosphere Biosphere virtual LABoratory, CAB-LAB”
1. The final objective is to select the best methods with respect to their performance in
detecting events in real data. Therefore, the artificial multivariate data cube needs to
fulfill some requirements such as seasonality, correlation, and non-linearity.

Three independent components Θt,lat,lon,var are created with a normal variability of
Gaussian noise, sd = 1. , each representing intrinsic properties of the earth system
[6]:

Θt,lat,lon = Bt,lat,lon · 2(kb·evt,lat,lon) +Nt,lat,lon · 2(kn·evt,lat,lon) + ks · evt,lat,lon · sd (1)

where N represents a common variation or noise, added to a baseline B and evt,lat,lon
are the events manually introduced. The magnitude of the event is multiplied by a pa-
rameter separately for the baseline (kb), the noise (kn) and a mean-shift parameter ks
scaled with the standard deviation of the data sd.

Earth system properties, Θt,lat,lon, are not directly measured but indirectly moni-
tored through correlated variables, X(t).The artificial set of correlated variables (X) is
created from the earth system properties (Θvar) by weighting them with linear random
weights w. This process is illustrated in Figure 1.

Figure 1: Combination of independent components Θvar to a set of correlated variables
X.

Thus, we finally create an artificial datacube Xt,lat,lon,var consisting of 10 variables
var, with 300 observations or timesteps t and a spatial coverage of 100 points of lat
and lon yielding a grid of 10000 points.

1see: http://earthsystemdatacube.net/
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1.2 Events definition

Within the artificial datacube, we introduced 5 different types of events resulting in 5
different datacubes. These events together with their abbreviations are:

• Shift in the mean of stationary data (BaseShift)

• Change in the variance (VarianceShift)

• Change in the amplitude of the mean annual cycle (MACShift)

• Trend in the time series (TrendOnset)

• Trend with an abrupt change to the initial state (TrendJump)

To complement these events and to increase the difficulty for event detection, we also
experimented with the following cases:

• Increase of the noise signal (NoiseIncrease)

• Long tailed Cauchy distributed noise (NonGaussianNoise)

• Red noise with temporal long term correlation and spatial correlation of the intrin-
sic components (CorrelatedNoise)

• Use of different spatial distribution shapes of the noise to an event, randomly
affecting its neighbor in the next timestep (RandomWalkExtreme)

• Increase of the number of intrinsically independent components from 3 to 6 (Mor-
eIndepComponents)

• Different temporal length of the extremes (LongExtremes,ShortExtremes)

1.3 Methods

The methodology proposed to achieve a Change Index can be divided in different
steps: i) Preprocessing, ii) Feature Extraction, iii) Event Detection and iv) calculat-
ing the Change Index (Figure 2). The preprocessing step includes any pre-treatment
done to the variables like normalizing them or transforming them by its logarithms for
example.

1.3.1 Feature Extraction Techniques

The following techniques, or combinations of them, have been tested:

• Spatial filter (SF): consists of a spatial moving average of surrounding cells. We
use a 3x3 filter matrix, weighting the value of each pixel itself with 50%, the value
of its neighbours with 7.5% or 5% at the edges.

• Time Delay Embedding (TDE): increases the feature vector with time delayed
vectors to include temporal context information [5] [17]. Critical hyperparameters
are the time delay τ and the number of dimensions. We fix τ to 6 and the di-
mension to 3, which is a compromise between the typical choice of the first zero
crossing of the temporal auto correlation function (here: 12) and an accurate tem-
poral detection (requires small τ ).
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Figure 2: Diagram of the methodology.

• Principal Component Analysis (PCA): transforms a set of correlated variables
into a set of linearly uncorrelated variables, called principal components. We
choose the number of principal components such that at least 95% of the vari-
ance in the original datacube are explained.

• Independent Component Analysis (ICA): is one standard technique of data-
based process monitoring that separates a multivariate signal in additive non-
gaussian subcomponents which are assumed to be statistically independent [5].

• Substraction of the Mean Annual Cycle (sMAC): it is a common technique in
extreme detection in environmental variables that present a seasonal behavior.
The remainder part of the time series is often referred to as anomalies [21] [20].

• Exponential Weighted Moving Average (EWMA): is one way of reducing the
noise of the time series and taking temporal information into account. It is com-
mon in the context of classical multivariate statistical process control to detect
only ’significant’ outliers [12].

1.3.2 Event Detection Methods

• Hotelling’s T 2: this method computes the mahalanobis distance from each data
point x to its mean [8].

• Multivariate Exponential Weighted Moving Average (MEWMA): it is based
in Hotelling’s T 2, but with an exponential weighting of the data in the temporal
dimension [12] [11] .

• Kernel Density Estimation (KDE): is a standard technique of estimating densi-
ties using gaussian kernels centered on each datapoint [15].

• K-nearest neighbors (KNN): can be used for outlier detection by considering
the mean distance (γ) and the length of the mean vectors (δ) of the K nearest
neighbors [7].
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• Support Vector Data Description (SVDD): tries to fit a hypersphere around the
given data by allowing some slack variables [19].

• Recurrences: a concept based on the theory of nonlinear dynamical systems
assuming that each state of a dynamical system will revisit a certain region in its
phase space, if waiting for a sufficiently long time [16]. These dynamics can be
visualized in the recurrence plot and are quantified with a bunch of measures.
We use the local recurrence rate to quantify rare events [13]. A similar technique
has been already applied in computer vision applications,[9].

• Kullback-Leibler Divergence: This new developed method will be explained in
detail in Section 3.

• Kernel Null Foley-Sammon Transform (KNFST): maps the training data into
a null space, in which the training samples have zero variance, i.e., all training
samples are mapped to the same point called the target value [2]. As for SVDD,
a kernel matrix is used as input and learning the null space model is performed
based on a random sample of 5000 points. In the testing phase, we compute
pairwise similarities between test data and training samples with the kernel func-
tion, which are used to project the test data into the null space in order to finally
compute the absolute distance to the training target value as a measure of dis-
crepancy.

• Univariate: Extremes in an univariate sense are any data above (or below, de-
pending on being maximum or minimum extremes) a certain threshold. This is the
simplest way to define an extreme and therefore is included here for comparison
reasons.

1.4 Preliminary Results

To compare the results, the Area Under the Receiver Operator Characteristic Curve
(AUC) was calculated. This metric allows us to evaluate the performance of each
method.

In Figure 3, results are shown for the different types of events applied to the entire
artificial datacube created (10 variables, 300 timesteps and a spatial grid of 10.000
nodes, 100x100 ). For each event type, the x-axis shows the difficulty parameter used
to create the event (we refer to this as complication), the colors represent the method
used and the symbols the feature extraction.

From the results obtained it can be seen that for a given event type and complica-
tion, the value of AUC (and therefore the ability to correctly detect the events) can vary
largely depending on the method and the feature extraction technique used. In case of
detecting changes in the baseline (BaseShift), fast recovering trends (TrendOnset) and
a shift in the variance (VarianceShift), Gamma (K-nearest neighbors) is the best algo-
rithm. However, it is closely followed by Parzen and Recurrences, which yield highest
results for a change in the mean annual cycle (MACShift) and a starting trend in the
time series (TrendOnset). Regarding the feature extraction techniques, PCA-EWMA
is the one to choose for BaseShift, TrendOnset and TrendJump. For MACShift TDE-
PCA-sMAC-EWMA exhibits considerably better results. In the case of VarianceShift,

7



0.
4

0.
6

0.
8

1.
0

BaseShift
M

ea
n 

A
U

C

C
or

re
la

te
dN

oi
se

:m
ag

n+

Lo
ng

E
xt

re
m

es
:m

ag
n+

M
or

eI
nd

ep
C

om
po

ne
nt

s:
m

ag
n+

N
oC

om
pl

ic
at

io
n:

m
ag

n+

N
oi

se
In

cr
ea

se
:m

ag
n+

N
on

G
au

ss
ia

nN
oi

se
:m

ag
n+

R
an

do
m

W
al

kE
xt

re
m

e:
m

ag
n+

S
ea

so
na

lC
yc

le
:m

ag
n+

S
ho

rt
E

xt
re

m
es

:m
ag

n+

0.
4

0.
6

0.
8

1.
0

TrendOnset

M
ea

n 
A

U
C

C
or

re
la

te
dN

oi
se

:m
ag

n+

M
or

eI
nd

ep
C

om
po

ne
nt

s:
m

ag
n+

N
oC

om
pl

ic
at

io
n:

m
ag

n+

N
oi

se
In

cr
ea

se
:m

ag
n+

N
on

G
au

ss
ia

nN
oi

se
:m

ag
n+

S
ea

so
na

lC
yc

le
:m

ag
n+

0.
4

0.
6

0.
8

1.
0

TrendJump

M
ea

n 
A

U
C

C
or

re
la

te
dN

oi
se

:m
ag

n+

Lo
ng

E
xt

re
m

es
:m

ag
n+

M
or

eI
nd

ep
C

om
po

ne
nt

s:
m

ag
n+

N
oC

om
pl

ic
at

io
n:

m
ag

n+

N
oi

se
In

cr
ea

se
:m

ag
n+

N
on

G
au

ss
ia

nN
oi

se
:m

ag
n+

S
ea

so
na

lC
yc

le
:m

ag
n+

S
ho

rt
E

xt
re

m
es

:m
ag

n+

0.
4

0.
6

0.
8

1.
0

MACShift

M
ea

n 
A

U
C

C
or

re
la

te
dN

oi
se

:m
ag

n−
C

or
re

la
te

dN
oi

se
:m

ag
n+

Lo
ng

E
xt

re
m

es
:m

ag
n−

Lo
ng

E
xt

re
m

es
:m

ag
n+

M
or

eI
nd

ep
C

om
po

ne
nt

s:
m

ag
n−

M
or

eI
nd

ep
C

om
po

ne
nt

s:
m

ag
n+

N
oC

om
pl

ic
at

io
n:

m
ag

n−
N

oC
om

pl
ic

at
io

n:
m

ag
n+

N
oi

se
In

cr
ea

se
:m

ag
n−

N
oi

se
In

cr
ea

se
:m

ag
n+

N
on

G
au

ss
ia

nN
oi

se
:m

ag
n−

N
on

G
au

ss
ia

nN
oi

se
:m

ag
n+

R
an

do
m

W
al

kE
xt

re
m

e:
m

ag
n−

R
an

do
m

W
al

kE
xt

re
m

e:
m

ag
n+

S
ho

rt
E

xt
re

m
es

:m
ag

n−
S

ho
rt

E
xt

re
m

es
:m

ag
n+

0.
4

0.
6

0.
8

1.
0

VarianceShift

M
ea

n 
A

U
C

C
or

re
la

te
dN

oi
se

:m
ag

n−
C

or
re

la
te

dN
oi

se
:m

ag
n+

Lo
ng

E
xt

re
m

es
:m

ag
n−

Lo
ng

E
xt

re
m

es
:m

ag
n+

M
or

eI
nd

ep
C

om
po

ne
nt

s:
m

ag
n−

M
or

eI
nd

ep
C

om
po

ne
nt

s:
m

ag
n+

N
oC

om
pl

ic
at

io
n:

m
ag

n−
N

oC
om

pl
ic

at
io

n:
m

ag
n+

N
oi

se
In

cr
ea

se
:m

ag
n−

N
oi

se
In

cr
ea

se
:m

ag
n+

N
on

G
au

ss
ia

nN
oi

se
:m

ag
n−

N
on

G
au

ss
ia

nN
oi

se
:m

ag
n+

R
an

do
m

W
al

kE
xt

re
m

e:
m

ag
n−

S
ea

so
na

lC
yc

le
:m

ag
n−

delta
gamma
KNFST
parzen
rec
SVDD
T2
Univariate

delta
gamma
KNFST
parzen
rec
SVDD
T2
Univariate

delta
gamma
KNFST
parzen
rec
SVDD
T2
Univariate

●

●

●

ICA_EWMA
ICA_sMAC
ICA_sMAC_EWMA
None
PCA_EWMA
PCA_sMAC
PCA_sMAC_EWMA
PCA_VAR
PCA_VAR_EWMA
PCA_VAR_TDE_EWMA
SF_TDE_PCA
SF_TDE_PCA_sMAC_EWMA
TDE_PCA
TDE_PCA_sMAC_EWMA

Figure 3: Comparison results in terms of AUC for the different types of events.

PCA-VAR is the best.

In this figure the Kullback-Leibler divergence method was not included. This method,
in its current state, is computationally demanding when dealing with large spatial grids.
Therefore a smaller grid of 5 latitudes and longitudes (5x5) has been tested. The re-
sults of the tests done to this smaller grid are presented in Figure 4.

In this smaller grid tested, for the case of studying the BaseShift and TrendJump
the Kullback-Leibler divergence and the K-nearest neighbors methods get the promis-
ing results in combination with the PCA-VAR feature extraction technique. Further work
will be done in terms of improving the Kullback-Leibler divergence method and its ap-
plicability to large-scale datasets. Please also note that only a single early prototypical
version of the KL-method has been tested so far.

1.5 Conclusions

Several methods and techniques were analyzed and compared in their ability to detect
different types of events in a multivariate dataset. To perform these experiments and
comparisons, an artificial dataset representing the same characteristics of Earth Ob-
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Figure 4: Comparison results in terms of AUC, for a smaller grid and including an early
prototypical version of the Kullback-Leibler divergence method, for the different types
of events.

servation data was previously created.

From the results obtained, we are able to provide some guidance in terms of which
method performs better regarding the kind of events to be detected: the Gamma,
Parzen and Recurrences methods are good choices for detecting changes in the base-
line, the variance, fast recovering trends and changes in the mean annual cycle. In
addition, in terms of the feature extraction techniques tested: the combination PCA-
EWMA gives better results for trends detection and changes in the baseline; PCA-VAR
is the best option for shifts in the Variance and TDE-PCA-sMAC-EWMA outperforms
the other techniques when detecting changes in the mean annual cycle.

With this analysis we are able to go one step further and apply the selected methods
to real data.
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2 Kernel Functions for Mixed Discrete-Continuous and
Partially Observed Time Series

As can be seen in our report about existing novelty detection algorithms, a large num-
ber of the techniques depends on kernel functions that measure the similarity between
data points. The behavior of the algorithm and the model learning highly depends on
the kernel function used.

The multivariate time series we have to deal with in BACI make choosing the right
kernel function even more challenging. This is mainly due to: (1) different scales of
the variables, (2) a mixture between discrete and continuous variables and (3) missing
measurements for certain spatio-temporal positions. Whereas (1) can be tackled by
proper normalization of the ranges, issue (2) requires new types of kernel functions and
issue (3) asks for statistically reasonable strategies of imputation and marginalization.

2.1 Kernel functions for mixed discrete continuous time series

A standard kernel function often used as a default solution in machine learning is the
squared exponential kernel (often: radial basis function or Gaussian kernel):

KSE(x,x∗) = σ2 exp

(
−(x− x∗)

2

2`

)
, (2)

where σ2 and ` are kernel-specific hyperparameters. The kernel KSE is often a good
starting point because it can be applied to a large set of problems and corresponds
to an infinite dimensional Hilbert space. However, since it directly uses the Euclidean
distance between two data points it theoretically requires variables coming from a con-
tinuous input space. For a given data domain within BACI this is only true for some of
the variables. Other variables come from a discrete space related to a given catego-
rization. For these cases, the Euclidean distance is not reasonable, since a discrete
value of 1 is not closer to 2 than to every other positive discrete value within the cate-
gorization classes.

Therefore, it is necessary to define kernel functions for non-continuous attributes.
In [3], the authors compare 14 different similarity measures for discrete data. In the fol-
lowing, we consider additive kernel functions, where the similarity between two points
is defined by:

K(x,x∗) =
1

D

D∑
d=1

Sd(x,x∗) . (3)

with Sd being kernel functions specific for each dimension d of the input variables.

We chose two rather simple but good performing measures from [3] as a basis for
discrete kernel function. The Overlap measure returns 1 if the value for attribute d
is equal and 0 otherwise. This kernel function is equivalent with a Gaussian kernel
with zero variance parameter and corresponds to a delta impulse. Using it for discrete
and especially categorical attributes is very intuitive, since no relation on the values is
defined.
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The second measure is called Goodall4 [3]:

Sd(xd,x∗d) =

{
fd(xd)(fd(xd)−1)

N(N−1)
if xd = x∗d

0 otherwise
(4)

where fd(x) is the frequency of how often the attribute d takes value x. In case the
values of two examples are equal, the similarity highly depends on the frequency of
the values. More unlikely values also yield a lower similarity of the examples. This
kernel functions is especially useful when discrete and categorical attributes have non-
uniform probability distributions. Unusual values that have been rarely observed in the
training set might be related to data noise and are down-weighted in the kernel function.

We test these kernels for an upscaling regression task related to WP 4.1. For
the GP regression in our experiments, we use different kernel functions for different
variables of our data. We build a base kernel Kc on continuous variables using the SE
kernel function and a base kernel Kd on discrete dimensions using either Overlap or
Goodall4. Both Kc and Kd are combined in order to get the final kernel K. We choose
a combination by adding both base kernels since it produces a final kernel which has
high values if either of the two base kernels has a high value.
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3 Max-Divergent Regions – A New Machine Learning
Algorithm for Extreme Event Detection

We show how to find extreme regions in Earth Observation data. Our approach is
based on maximizing the Kullback-Leibler divergence between the data distribution
within a region and the distribution outside of the region. Modelling the data distribu-
tion can be done either by kernel density estimation [15] or Gaussian assumptions,
depending on the type of input data and the runtime requirements of the algorithm.

3.1 Definitions and problem description

We first focus on finding extreme regions in time series (xt)
n
t=1, where xt ∈ RD is a

multivariate observation at time step t. Furthermore, we assume that all the data is
given in advance and we want to detect extreme regions a posteriori in an offline batch
fashion.

A very intuitive way of characterizing an extreme region is that its data distri-
bution differs significantly from the data distribution of the remaining time series.

In the following, we will denote a region with I = {t | t1 ≤ t < t2} and its data
distribution with pI . The remaining set of data points is denoted by Ω = {1, . . . , n} \ I
with data distribution pΩ. To develop a concrete algorithm based on above definition,
the following questions have to be answered:

1. How can we calculate a difference between data distributions pI and pΩ?

2. How can the data distributions be modelled and estimated?

3. How is it possible to find the region with maximum difference in the data distribu-
tions?

In the following, we propose to use the empirical Kullback-Leibler divergence to mea-
sure the difference between distributions. Furthermore, we show that by modelling the
data distributions either by kernel density estimation or simple Gaussian assumptions,
we can compute the empirical KL-divergence in an efficient manner, which also allows
for greedy optimization of the region later on.

3.2 Maximizing the Kullback-Leibler divergence

The empirical Kullback-Leibler divergence of two distributions pΩ and pI is defined as
follows:

KL(pI , pΩ) = −
∫
pI(x) log

pI(x)

pΩ(x)
dx . (5)

The KL divergence is zero for identical distributions and large for “significantly different”
data distributions. We approximate it using an empirical expectation over the set of
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extreme points leading to:

KL(pI , pΩ) ≈ KLI,Ω =
1

|I|
∑
t∈I

log
pI(xt)

pΩ(xt)
(6)

=
1

|I|
∑
t∈I

(log pI(xt)− log pΩ(xt)) (7)

This resulting criterion is very intuitive since it is calculating the differences of log-
likelihoods for pI and pΩ. To find the region belonging to an extreme event, we maximize
the KL divergence with respect to the region I:

Î = argmaxxI ∈ I KL(pΩ, pI) . (8)

The set I contains suitable regions and is important to integrate prior expectations
about extreme regions, such as a range of possible region sizes. Naive brute-force
optimization of the KL divergence requires O(|I| · T ) operations, where T is the time
needed to evaluate the KL divergence and I is usually O(n · n′) with n′ being possible
lengths of an extreme region. A property of the KL-divergence is its asymmetry, i.e.
KLI,Ω 6= KLΩ,I . The question is therefore which version fits best to our task. Other
work [10] often relied on a symmetric version of it. In our experiments, we evaluate
different choices and provide further insights on their differences.

Parameterizing the KL-divergence To allow for tuning our algorithm, we use a pa-
rameterized version of the KL divergence with a hyperparameter α > 0:

KLα(pΩ, pI) =
1

n

n∑
t=1

pΩ(xt) log
pαI (xt)

pΩ(xt)
(9)

However, one should use something like the power divergence [18] or the density
power divergence [1].

3.3 Maximally divergent intervals for arbitrary smooth distribu-
tions

A very flexible way to model and estimate distributions is kernel density estimation. For
a given kernel function K, the estimate for pI is defined by:

pI(x) =
1

|I|
∑

t1≤t<t2

K(x,xt) (10)

for an arbitrary multivariate observation x. We use a similar estimate for pΩ. As a kernel
function, we use the common Gaussian kernel:

K(x,x′) =
1

√
2π

D
σD

exp

(
‖x− x′‖2

2σ2

)
(11)

with hyperparameter σ2.
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3.4 Relationship to the density ratio method of Liu et al

The most similar paper to ours is the method of Liu [10], which also uses a divergence
criterion to detect changes in the data. However, there are major differences between
their approaches and ours.

First, [10] considers always the last k data points in a time series X(t) = {xt,xt−1,
xt−2, . . . ,xt−k+1} and compares the distributions of X(t + k) and X(t), i.e. chunks of
the time series with k data points. Second, they use the f -divergence defined by:

f-div(pΩ, pI) =

∫
pΩ(x) · f

(
pI(x)

pΩ(x)

)
dx (12)

with the KL-divergence being a special case for f = log and with our notations in
place. Furthermore, they present multiple methods where the density ratio in the above
formula is not computed explicitly like in our case but estimated indirectly with different
kernel methods:

pI(x)

pΩ(x)
=

n∑
t=1

αt ·K(xt,x) , (13)

where αt are coefficients to be estimated. Whereas, directly estimating the ratio might
have a benefit especially for small-sample cases, it would be not trivial to develop effi-
cient algorithms for optimization of the interval I.

In summary, the method of Liu applied to our maximum-divergent region scenario
could indeed lead to a performance gain but likely at the cost of a dramatically in-
creased inference time.

3.5 Experiments

3.5.1 Data

Wave data (significant wave height, Hs and wave period, T ) at a location near the
North-Western Spanish coast were obtained from the hindcast DOW 1.1 (downscaled
ocean waves, [4]), developed by IH Cantabria. Although these data have an hourly
temporal resolution, for computational reasons we have used them 3-hourly aggre-
gated.

3.5.2 One-dimensional application

Initially, despite the data used present a longer coverage we have tested the method
only in one winter: from the beginning of November 2007 until the end of February
2008, therefore we are working with a dataset of about 1200 observations. From the
time series presented in Figure 5 we extracted the Peaks Over Threshold (POT). Set-
ting the threshold in 5 meters (corresponding to the percentile of 90% of the time se-
ries) and imposing a minimum lag of 3 days between peaks we extracted up to 8 peaks.
The minimum lag of 3 days between peaks is related to the location of the data: in the
North-Atlantic the typical duration of a storm is of 3 days, therefore for peaks separated
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Figure 5: Wave data time series.

in time more than that can be assumed to be caused by different storms [14].

We have applied our KL method to the same time series, setting the size of the
regions to be find equal to 24 timesteps (3 days with 8 observations per day) to be
consistent with the 3 days independence lag imposed in the POT. In Figure 6 the re-
sults obtained with both methods are shown: the black dots represent the 8 peaks
extracted with the POT. Shaded areas represent the regions obtained with the KL-
divergence method. The areas colored in blue were obtained assuming that the points
in the region follow a Gaussian distribution while the areas colored in red were ob-
tained by modeling the regions through a Kernel Density Estimation (Parzen method,
[15]). Purple areas are regions where both method overlap. Only the 8 most divergent
regions extracted with each approximation are depicted. Notice that with the case of
the Parzen approximation, 7 from the 8 peaks occur within the extreme regions defined
by the method.

Figure 6: Results obtained with the KL-divergence method compared to a POT.

Initially, the Parzen approximation seems to be much more appropriated to accu-
rately represent the data. But the Gaussian approximation might be useful when deal-
ing with very long time series because is less computationally demanding. This is the
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case of the data used in these tests, the temporal coverage of the wave record expands
from 1957 until 2007, 51 years which makes a dataset of about 150.000 observations
(once they have been 3-hourly aggregated). Applying the Parzen method to this tem-
poral series was unfeasible, but it could be done with the Gaussian approximation,
Figure 7.

Figure 7: Results obtained in a long term time series.

The pale grey line represents the time series of wave height. From this time series,
the 51 annual maximum were extracted (red asterisks). In addition, a POT was applied
in such a way that the same number of peaks (black dots) were extracted: i.e. 3 days of
independence lag and a threshold of 8.91 meters. Finally, the Kullback-Leibler method
was used to extract the 51 most divergent regions with the Gaussian approximation.
Regions of 24 observations were detected and the maximum within these regions was
extracted (green triangles).

The KL method developed performs satisfactory and is able to detect a representa-
tive number of extremes. It performs better than the Annual Maximum compared with
the POT, detecting 33 of the 51 same extremes when the Annual Maximum and the
POT only coincides in 29 of the 51 events.

Compared with the Annual Maxima the Kullback-Leibler method presents the ad-
vantage of not being restricted to the annual constraint, so if there are two extreme
events within the same year they can be detected. Additionally, when compared to the
POT it has the advantage of no need for a threshold definition: the most divergent re-
gions are detected and decreasingly sorted so instead of defining a threshold we only
need to select the number of regions we want to extract from the time series.

In addition, the Kullback-Leibler method proposed here provides more information
than the other two. Not only peaks are detected but abnormal regions were the distri-
bution is significantly different from the rest of the time series. In this example it has not
been explored but the method allows searching and optimizing the size of the regions
detected. This could be useful in many cases were the variables involved are not so
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related to physical processes like waves. Or even working with wave data, in loca-
tions were the combination of locally and regionally generated waves (sea and swell
components) is important.

3.5.3 Two-dimensional application

Despite being the most important variable to define marine climate, the wave height
alone may not be sufficient to fully characterize the wave conditions. As a minimum,
the mean period associated to the wave height is required in most of the cases.

We have tested the Kullback-Leibler divergence method to the bivariate scenario
(Hs and T ) of the winter of 2007-2008. We have applied the method with the Parzen
approach and extracted the 10 most divergent regions. The size of the regions, as in
the 1-D case, was fixed to 24 timesteps.

In Figure 8 the results obtained are depicted. The left plot shows the two time series
(Hs and T ) with the 10 regions while the left graph represents the bivariate scatter plot
and the colored circles mark the 10 regions. As it can be seen from both plots, the
method is able to detect groups of data that define an abnormal event. These events
might be either in the upper right tail of the joint distribution (maximum events: i.e. big
waves and/or long periods) or in the lower left tail (minimum events: i.e. calm sea
conditions with almost no waves).

Figure 8: Results in a bivariate case (Hs and T ).

3.5.4 Higher dimensions

The way the method has been exposed and developed allows its application to high-
dimensional problems. For the sake of a simpler graphical representation and intuitive
understanding we have not included in this report examples with more variables. In
the methods comparison developed within this Task 5.1 (see Section 1 ), applied to
an artificial dataset (to be later extrapolated to real data) this method was successfully
used with 10 variables.
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3.6 Conclusions

Within this last part of the report a newly developed method to detect extreme events
in multivariate time series has been presented and explained in detail. The methodol-
ogy proposed is based on the use of Kullback-Leibler divergence to find regions of the
time series where the difference between this region and the rest of the time series is
maximum. These events where the divergence is relatively large are assumed to be
extreme events.

Applications of the method to real data in both univariate and bivariate cases were
showed. The method has been also used and compared with other methods by using
artificial data as it was explained in the Section 1 of this report.

This promising method will be more tested and explored in more real environmental
variables databases from the project.
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Conclusions

This report refers to the works done related to the Task 5.1 - Time-series extension
null space and GP methods and combination with spatial clustering within the Work
Package 5 - Synthetic Index and Attribution Scheme: the BACIndex.

The works done can be divided in two main parts:

In a first part a comparison between different methods and techniques to detect
extreme events was done. This comparison was done using a dataset of artificially
created variables were the extremes were known. By doing so, the comparison was
fully controlled and gave the opportunity to determine which methods performed better
depending on the kind of extreme events analyzed.

Within the methods compared, a newly developed method was introduced. This
method is based in the maximization of the Kullback-Leibler divergence to detect re-
gions of the time series were the distribution is notably different to the rest of the time
series. This new method performs successfully in different kind of real and artificial
dataset.

The work presented in this deliverable represents the successful accomplishment
of the duties enclosed in Task 5.1.
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