
 

 

 

Detecting changes in essential ecosystem and biodiversity properties- towards a 
Biosphere Atmosphere Change Index: BACI 

Deliverable 4.5: Global products of plant trait phenologies  

 

 

 

Project title: Detecting changes in essential ecosystem and biodiversity 
properties- towards a Biosphere Atmosphere Change Index 
 

Project Acronym: BACI 
 

Grant Agreement number: 640176 
 

Main pillar: Industrial Leadership 
 

Topic: EO- 1- 2014: New ideas for Earth-relevant space 
applications 
 

Start date of the project: 1st April 2015 
 

Duration of the project: 48 months 
 

Dissemination level: Public 

Responsible of the deliverable Miguel Mahecha 
Phone: +49 3641 576226 
Email: mmahecha@bgc-jena.mpg.de 
 

Authors 
 
Date of submission: 
 

Talie Musavi, Julia Joswig, Daniel Pabon, Miguel Mahecha 
 
31.12.2017 

 

Ref. Ares(2017)6389630 - 31/12/2017



Summary 
This deliverable describes the efforts to generate a global product of an plant trait phenology. 
We have explored different avenues and finally concluded that one should work at the 
ecosystem scale and use integrated trait estimates. We focussed on deriving the ecosystem 
level functional property “GPPsat” as target and produced a multi-year phenology based on the 
results of the upscaled half-hourly datasets (from the D4.4). However, an in-depth quality 
assessment of this data product did not provide convincing results as we explain here. Hence, 
we finally decided to work with a local maximal GPP estimate (GPP90) as phenology data set 
which is methodologically more robust to derive and still highly informative for assessing the 
development of ecosystem properties.  

1. Introduction 
In its original meaning, “Phenology” describes periodic events or states of development in the 
life of an organism or community. Phenology is considered a candidate “essential biodiversity 
variable” (EBV) by GEO-BON. However, by today this EBV is vaguely defined and it remains 
unclear what the underlying metrics should describe. Traditionally, direct observations of 
phonological states of different species had been considered. Since remotely sensed vegetation 
indices have become widely available, these data streams are also used to monitor vegetation 
phenology. However, defining phenology based on remote sensing indices only does not allow 
for an ecophysiological interpretation. Remote sensing indices rather indicate if the vegetation 
under scrutiny is “active” or “not” or one may identify e.g. senesce periods etc. However, 
phonological indicators of this kind are not so well interpretable in terms of “ecosystem 
functioning”.   

The goal of this deliverable was therefore to produce a “phenology” that offers a clear 
ecophysiological interpretation. We explored various avenues in this direction that are reported 
here: Firstly, we explored the potential of upscaling plant functional traits in space and time. 
While the spatial upscaling worked out well, we did not achieve a temporal description of the 
“active” traits. Secondly, we explored the possibility to derive a dynamical description of 
ecosystems photosynthetic capacity at light saturation (GPPsat) by means of a model-data 
integration approach. This property is often named a key “ecosystem functional property”, as it 
describes the potential of an ecosystem to take up CO2 in a comparable way (i.e. at some 
reference condition). We found, however, that this approach suffers from severe limitations that 
are discussed here. Hence, we thirdly produced a robust metric on the temporally varying 
maximal GPP, i.e. the observed local maxima of GPP on a given time-horizon that can be 
interpreted as the realizable maximal ecosystem uptake of CO2. This last data product is 
uncritical and can be well interpreted. 

 



2. Potentials and limitations of extrapolating plant functional traits 
We first investigated the potential and limitations of using plant functional trait observations from 
global databases (i.e. TRY, see data preparations as described in WP3). We followed two 
avenues: 1. Using geographical sampling information of plant traits. 2. Matching traits measured 
in-situ with traits inputted from a global database.  

With respect to the first approach, we found that using geographical sampling information of 
plant traits we could, in practical terms, produce global maps by means of high-dimensional 
regression approaches (PLS). However, the prediction accuracy was only becoming accurate 
when we upscaling the traits first at a very course resolution, e.g. ecoregions sensu Olson et al. 
(2001). 

 

	

Figure 1 Predictions of leaf phosphorous (P) content per leaf dry mass predicted at 1° resolution. Predictions are 
based on single trait – climate (ERA-interim reanalysis) models (n=100) created by a variable selection (Competitive 
Adaptive Reweighted Sampling, CARS) in combination with a dimensionality reduction (Partial Least Squares, PLS) 
that accounts for collinear predictor variables. The encoded relationships have been learned at the level of 
ecoregions (Joswig et al. in prep.). 

Despite of this apparent progress, we found that the explanatory power of environmental 
variables is limited if we use only climate data as predictors for plant traits. Figure 1 is showing 
the predicted “leaf phosphorous content” as an example where only 40% of the trait variability 
was explained with climate variables using the partial least square regression (PLS) method. To 
understand this pattern better, i.e. why we only achieve moderate prediction powers, we 
performed a PCA of the plant traits. We reduced the dimensionality of the trait space into two 
dimensions. Visualizing the leading two axes against latitudes (see Fig. 2) shows that one can 
hardly see any pattern. There is hardly any distinction of plants between trait assemblies across 
latitudes. However, when we aggregate the components to a 1° latitudinal band we would find 
an excellent agreement of latitude vs. PC1 of the traits (r2 = 0.84) (Fig 2). This analysis leads us 
to one insight: Plant traits are very heterogeneous in space, and therefore a straight forward 
upscaling approach, as it has proven to be successful for land-surface fluxes of CO2 (see D4.1), 



cannot be achieved. Nevertheless, this study has nourished our hypothesis that we may find 
clear environmental signals when aggregating plant traits to scales that are of sufficient 
coarseness to not be confounded by local environmental conditions. In fact, this is an avenue 
that we are currently exploring in a separate study under the lead of Julia Joswig in close 
collaboration with the iDiv. 

	

Figure 2 Dimensionality reduced (PCA) gap-filled traits (bHPMF, Shan et al. 2012, Fazayeli et al. 201x, Schrodt et al. 
2015) on single plant observation scale along the absolute latitude. Point colour according to biome (a) First PCA axis 
of observation level traits along absolute latitude, points in black refer to binned PC 1 values to 1° of absolute latitude 
(b) Second PCA axis of observation level traits along absolute latitude, points in black refer to binned PC 1 values to 
1° of absolute latitude. 

With respect to the second approach, we investigated to which extent we can benefit from 
global plant trait databases to explain ecosystem photosynthetic capacity at the local scale. As 
these are entirely independent measures, we have an independent source for exploring the 
potential to upscale plant traits. We carried out a study where we compared the explanatory 
power of locally sampled trait data versus data aggregated from the global database TRY (see 
in-situ data curating efforts in WP3). In order to have an independent reference, we explored 
how local traits correspond to ecosystem functional properties (EFPs, see Del. 4.2). We carried 
out a full study to investigate this issue: The paper by Musavi et al. (2016) used ecosystem 
photosynthetic capacity as an example EFP. The study first provides an objective approach to 
derive robust EFP estimates from gross primary productivity (GPP) as obtained from eddy 
covariance flux measurements. This is similar to the approach provided in Del. 4.2, but more 
elaborated as it based on a conceptually well-founded model-data integration approach.  

The study then investigates how well EFPs and plant functional traits are related in time and 
space. The relationships between foliar nitrogen concentration and ecosystem photosynthetic 
capacity are tighter when both of the measurements are synchronized in space and time. In 
addition, we found that when using multiple plant traits simultaneously as predictors for 
ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio 
with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best 
(adjusted R2 = 0.55) (Fig. 3).  

Figure 2: (a) First principal component of size traits against absolute latitude, colors
according to biomes, black points are mean size- first principal component at 1�of absolute
latitude. Line refers to the linear model for bins (r2=84%; compared to single median
species per ER r2=37%). (b) First principal component of LES traits against absolute
latitude, colors according to biomes, points are mean LES- first principal component at
1�of absolute latitude. Line refers to the linear model for bins r2=11%; compared to single
median species per ER r2=1%).

original resolution and binned by latitudinal bands of 1�. The first principal72

component corresponds to the size traits, explaining 32.6% of the total vari-73

ance, and shows a clear linear relationship with the latitude (r2=84% for the74

aggregated PC). The second component corresponds to the second cluster75

i.e. the LES traits, explains additional 14.94% of the trait matrix, and has76

hardly any relationship with the latitude (r2=11% for the aggregated PC)77

given a nonlinear response to high latitudes. These global gradients revealed78

in fig.2. a�rm our expectation of global gradients in plant trait prevalence,79

but it does not answer the question which are the actual environmental sig-80

nals most strongly shaping global patterns of plant traits.81

To address this question we proceeded from aggregating to latitudinal82

bands to including more environmental variables and aggregated to ecore-83

gions which consist of distinct assemblages of natural communities [17]. This84

aggregation to ecoregions is supposed to exclude small scale e↵ects of the85

environment on traits. These can neither be captured by the sparsely mea-86

sured traits themselves, nor by climate and soil data, which at global scale87

are available at limited resolution only. Figure 2 already provided evidence88

for the usefulness of aggregation, especially in the case of size traits as their89

broad-scale pattern become clearer with it. We explain this by the removal90

of both, small scale e↵ects such as biotic interactions or historical e↵ects and91
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Figure 3	 Relationship between photosynthetic capacity at 1000 Wm-2 global radiation GPPsat (star symbols: 
ecosystem photosynthetic capacity estimates using PAR), photosynthetic capacity at  2000 µmol.m-2s-1 absorbed 
photosynthetic active radiation (APAR) or GPPsat.structure (round points are for the relationship with ecosystem 
photosynthetic capacity estimates using APAR) and a) and N% from TRY, b) N% in situ, and c) GPPsat and 
GPPsat.structure derived from the same year of the trait sampling and N% in situ. Bold Bold R2 quantify relationships 
GPPsat and nonbold R2 quantify relationship with GPPsat.structure. Y-axes are ecosystem photosynthetic capacity as an 
example of an EFP, and x-axes are community weighted N%. The Macro accent on the EFP indicates that the GPPsat 
and GPPsat.structure are the multiyear averages for each site. The colors dark blue, light blue, dark green, light green, 
orange and yellow represent evergreen needle leaf forest, evergreen broad leaf forest, deciduous broad leaf forest, 
grassland, closed shrub-land, and cropland as the plant functional types of the sites, respectively.	

Overall, this study identified a clear link between leaf level traits and canopy level processes 
and highlights the relevance of the temporal dynamic nature of ecosystems. However, a key 
finding is that synchronizing measurements of eddy covariance fluxes and plant traits in time 
and space is shown to be highly relevant to better understand the importance of intra- and 
interspecific trait variation on ecosystem functioning. Following up on this, in a later study we 
investigated the interannual stability of the very same type of EFP. We found that ecosystem 
photosynthetic capacity (GPPsat) exhibits a strong link to stand age and biodiversity (Musavi et 
al., 2017). In this paper, Musavi et al., (2017) investigated the differences between sites for the 
stability in GPPsat and shows that it is best explained by the stand age and biodiversity 
differences between sites. Overall, these different studies revealed that 1) there is too much 
spatial variation in plant traits so that any relationship with climate/soil predictors at high 
resolutions (below 0.5°) unfeasible to derive accurately given our methods, and 2) that only 
space and time local measurements would allow to relate plant functional traits well with 
ecosystem functioning in time. Hence, we decided to explore different avenues in this 
deliverable.  

3. Phenologies of ecosystem functional properties 
Although we found that a direct extrapolation of traits intersected e.g. with species distributions 
and their phenologies (as it was the original plan) is not defendable we identified alternative 
ways forward. For instance, Musavi et al. (2016 and 2017) showed that leaf N% is tightly related 
to GPPsat and that the stability of GPPsat is linked to stand age and biodiversity. GPPsat is a 
property that has a direct physiological interpretation. It is very closely linked to plant traits at 
one hand and at the other hand is also maintained stable at the sites through the synergy 



between stand age and local biodiversity of the sites. More importantly, given that BACI has 
provided the first global product of half-hourly GPP data (see Del. 4.4) we expected to be able 
to produce phenologies of the EFP (here i.e. GPPsat) everywhere on the globe for a period of 
ten years.  

At each grid cell, we extracted the upscaled GPP half hourly products as provided by WP4 (see 
D4.4). For extracting the EFPs we followed the exact methodology as reported in the BACI 
paper by Musavi et al. (2017). For every grid cell, the estimates of photosynthetic capacity 
(GPPsat) were determined from upscaled half-hourly GPP estimates and absorbed 
photosynthetic active radiation (APAR). We fitted a non-rectangular hyperbolic light response 
curve function (NHLRC) to GPP and APAR data (sensu Gilmanov et al., 2003). The NHLRC is 
fitted to 5 days of data selected with a moving window approach. The parameters of the NHLRC 
were estimated (Amax, intercept, slope, and curvature) and we computed the expected GPP at 
1,500 of µmolm-2s-1 APAR (GPPsat), which represents the GPP at saturating light (that is, 
ecosystem photosynthetic capacity in the selected 5-day window). The estimated parameters 
and the GPPsat values were assigned to the day in the middle of the 5-day window. And so one 
could obtain a time series of GPPsat. Only parameters estimated with a model efficiency above 
a certain threshold (e.g. 0.5) would be accepted. For the estimation of GPPsat we not only 
relied on upscaled GPP (at half-hourly time-steps) but also needed a half hourly product of 
APAR. So far no APAR product is available at half hour time scales. In order to produce the 
data, we used a procedure using global solar radiation (Rg), potential radiation (Rpot) and 
fraction of photosynthetic absorbed radiation (fapar). 

For testing this method further, we used the fast track sites as they have been selected by the 
validation workpackage (WP6) – see Del. 6.1: 

Fast track site Latitude Longitude 
Central Romania 46 25 
Viterbo Province 42.5 12 
North Somalia 9 48 
South Somalia 2 43 
Kafa, South-west Ethiophia 7 35 
Krueger National Park (South Africa) -24 32 

 

The images of the time series clearly show the shifted phonological properties of e.g. the two 
sites in Somalia with two very distinct growing seasons (Fig. 6). The time series of GPPsat will 
be used to study its phenology e.g. periods of time when it is the highest during the year.  

 



 

Fig 5 The phenology of the photosynthetic capacity at the BACI fast-track sites. 

The phenology can, of course, be produced at multiannual scales and across space as shown 
e.g. in Fig. 6. In fact we estimated the time series of GPPsat for 10 years between 2001 and 
2010. The mean annual GPPsat is shown in Fig. 7. 

 



 

Fig 6 The multiyear phenology of the photosynthetic capacity at the BACI fast-track sites. 

 

Figure 7 Mean annual GPPsat for the years 2001 to 2010. The statistics are as following; minimum 0.07, 1st quantile 
0.11, mean 12.53, 3rd quantile 17.97 and maximum 54.52 µmolm-2s-1 of GPPsat. 

 

 

 



Figures 5-7 show that we were technically capable to derive a data product of GPPsat that 
would allow us, theoretically, to describe the phenology of ecosystem functioning. However, in 
order to assess the quality of this data product we performed some further quality assessments: 

• In order to reduce the number of outliers in the time series of GPPsat we attempted to 
use the parameter estimation of the previous moving window to have a better first 
parameter guess to use in model optimization. The results were then compared to the 
previous method when the first parameters guess was more fixed and not influenced by 
the previous moving window. However, unlike our expectation the outcome did not 
improve.  

• We also examined the moving windows in different gridcells, which revealed two issues 
regarding the use of NHLRC with our data: Firstly, the APAR values estimated using 
downscaling of Rpot by Rg and remote sensed retrievals of FAPAR values showed a 
very low range of values (see Fig. 8), which implies that the model could not fit the 
saturation well (see Fig. 9). Secondly, inspecting the relationships between the GPP and 
Rg shows that there is a strong linear relationship between the two which makes model 
efficiency (EF) to be high because the NHLRC model finds a very good fit only in the first 
part of the response curve, where the relationship is almost linear and GPP increases 
with APAR, but it does not saturate (Fig. 9). It seems like the GPP and Rg relationship in 
our data is more linear than a saturating one. 

 

	

Figure 8 Example of the global radiation (Rg –black points) and absorbed photosynthetic active radiation (APAR – 
red points) time series of three grid cells in 2001. a) grid cell located in Harward forest with latitude of 42.75 and 
longitude -72.25. b) grid cell located in central Germany with latitude 50.75 and longitude 10.25. c) grid cell located 
north of Australia with latitude -17.25 and longitude 133.25. (DOY: day of the year) 



	

Figure	9	A	5	day	moving	window	example	of	the	NHLRC	fit	for	GPP	in	response	to	APAR	(left	panel)	and	Rg	(right	panel)	with	the	

central	day	being	the	250	day	of	the	year	(DOY),	which	is	in	September	(data	from	2001).	For	three	different	gird	cells	from	up	

to	down,	located	in	Harward	forest	with	latitude	of	42.75	and	longitude	-72.25,	located	in	central	Germany	with	latitude	50.75	

and	longitude	10.25	and	located	north	of	Australia	with	latitude	-17.25	and	longitude	133.25.	

We then tested whether a linear model would be better for the fit rather than using a NHLRC 
model. We compared the Akaike Information Criterion (AIC) of the NHLRC model with the one 
of a simple linear regression model. The AIC as used here (sensu Burnham and Anderson 
2002) corrects for the number of parameters used in a models, i.e. is not biased by the unequal 
number of parameters in the two models: 



!"#$ = !"#$!! + 2! +  2!(! + 1)! − ! − 1   

The model with the lower value would be the one considered more suitable for the data. 

 

Figure 10 The difference between the AIC of the linear regression model and AIC of the nonlinear light response 
curve model (NHLRC). Positive values indicate the advantage of using NHLRC in comparison to the linear model. 
Negative values indicate the advantage of the linear model over the NHLRC. Zero values are when both models are 
equally good. For 74.4% of the land area the linear model would be a better choice over the NHLRC (negative values 
showed in red). The data used in the models are GPP and global solar radiation (Rg). 

The result shows that in large parts of the world a linear model will lead to a better fit than the 
NHLRC (Fig. 10). Considering these severe spatial limitations we cannot recommend using the 
GPPsat approach based on the NHLRC model for deriving a global phenology of ecosystem 
functioning. A more robust approach would be to estimate the 0.9 quantile of GPP (GPP90) in 
each moving window and to use the time series of GPP90 in future studies. The maximum GPP 
(GPP90) should be comparable to GPPsat and we have showed that the two estimates are 
highly correlated (Musavi et al., 2016) The advantage of a more simple approach of this kind is 
that the latter is not plagued by the methodological issues described for GPPsat. For each grid 
cell we used a moving window of 5 days and estimate GPP90 based on the GPP half hourly 
data, which are then assigned to the center day. In addition, we estimate the integral of half 
hourly GPP (GPPcum) for each day using the 5 day moving window approach. The comparison 
of the two products GPP90 and GPPcum would be beneficial when ecosystems with different 
seasonal cycle are compared (e.g. ever green vs. deciduous). In both cases we also use a 
bootstrapping of 500 repetitions and a sample size of 50 with replacement to estimate the mean 
and standard deviation of GPP90 and GPPcum. In Fig. 11 the mean GPP90 for the year 2001 is 
shown as an example. The data are made available on the BACI portal.  



	

 

Figure 11 a) The average GPP90 for the year 2001, b) latitudinal pattern of average GPP90 in year 2001. Red band 
around the line is the standard deviation of the GPP90 from the bootstrapping. 

	

4. Conclusions 
The original intention of task 4.4 and this very deliverable was to investigate novel ways to 
generate phenologies that can be computed globally and are of ecophysiological relevance. We 
have been exploring various avenues to achieve this goal. Initially we had assumed that the 
following workflow could be realized without major problems: 1) Intersecting various sources of 
species occurrence information and building species distribution estimates for all species for 
which we have plant functional traits. 2) Intersecting these results with phenological data to 
prune the species information back to timings when species are non-dormant and, via 
intersection of plant functional traits, a phenology of plant traits. However, our first analyses in 
this direction revealed that this approach was not tenable. This has to do with the problem that 
the spatial heterogeneity of plant traits is so large that it is hard to generalize directly. We 
followed various avenues in this direction, but considered that using ecosystem-scale values of 
GPPsat can be interpreted as an integrated surrogate for physiological traits. However, multiple 
methodological issues detected in a quality control step showed that we should better focus on 
local maxima of GPP (i.e. GPP90).  The resulting time series can be of relevance for monitoring 
changes in ecosystem properties and will be analyzed in the remaining time of the project. 
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