Detecting changes in essential ecosystem and biodiversity properties - towards a
Biosphere Atmosphere Change Index: BACI

Deliverable 4.3: Spatialized and yearly resolved tree-ring widths for Europe

Project title:

Project acronym:

Grant agreement number:
Main pillar:

Topic:

Start date of the project:
Duration of the project:

Dissemination level:

Responsible of the deliverable:

Authors and contributors:

Date of submission:

Detecting changes in essential ecosystem and biodiversity
properties - towards a Biosphere Atmosphere Change Index

BACI

640176

Industrial Leadership

EO-1-2014: New ideas for Earth-relevant space applications
18t April 2015

48 months

Public

Flurin Babst

Phone: ++48 579 516 164

Email: flurin.babst@wsl.ch

Flurin Babst, Paul Bodesheim, David Frank, Martin Jung,
Miguel Mahecha

30t March 2017



1 Introduction

Tree-ring data are an underexploited resource in Earth system science. This is partly because their
spatial and temporal representation of global forest biomes is discontinuous and overlaps insuffi-
ciently with modern Earth observations (Babst et al., 2017). Improving this representation is of broad
research interest because tree-rings can provide (sub-)annually resolved information on forest growth
over decades to centuries — a temporal domain unmatched by other global observational resources.
As systematic and repeated tree-ring sampling is impractical in many regions, we need to seek ways
of estimating tree-ring growth where measurements are lacking. Progress has been made to simulate
inter-annual tree-ring variability at the site level using process based modeling approaches (Breiten-
moser et al., 2014; Li et al., 2014; Mina et al., 2016). Yet, the current generation of mechanistic
models is dominated by carbon source activity (i.e. photosynthesis) and suffers key structural deficits
that often result in a poor representation of carbon sink activities, such as radial tree growth (Fatichi
et al., 2014; Zhang et al., in review). In view of these limitations, a valid alternative to mechanistic
modeling is the statistical upscaling of existing measurements based on observed relationships with
key environmental variables. Machine learning techniques have been successfully applied for such
purposes (Jung et al., 2017) and we are exploring their capacity to upscale tree-ring data across the
BACI domain. Within project task 4.3, we strive to develop gridded products of annual tree-ring vari-
ability that can easily be integrated with remotely sensed Earth observations and mechanistic model
estimates of forest dynamics. For this purpose, we use publicly available tree-ring width data from the
International Tree-Ring Data Bank (ITRDB) that has been homogenised and quality checked within
Task 3.4 of this project. During pre-processing, the raw measurements have been standardized us-
ing a cubic smoothing spline detrending to remove long term trends that are related to distributing
biomass around an ever increasing circumference as the tree ages. The resulting dimensionless
indices retain annual to multi-decadal variability in radial tree growth. Our efforts to produce gridded
tree-ring products are expected to increase the utility of tree-ring data for interdisciplinary research
both within and outside BACI.

2 Approach

In order to obtain spatialized and yearly resolved tree-ring widths, we have decided to use a random
forest regression approach since we also achieved promising results with this technique for upscaling
diurnal cycles of carbon and energy fluxes, which is Task 4.1 of Work package 4 within this project.
Random forest regression (Breiman, 2001) is a well studied machine learning technique to predict
continuous outputs (such as the tree-ring widths) from a set of predictor variables. As predictor
variables, we have used monthly average values of climate observations (variable names are given
in Table 1) from the CRU TS dataset (version 3.22) as well as monthly average values of a water
availability index (WAI) based on ERA-Interim harmonized data and WATCH meteorological forcings
that has been used by Zscheischler et al. (2014). All predictor variables are available for the years
1901 to 2010 covering a large fraction of the tree-ring measurements that can be used to learn a
regression model for estimating tree-ring increments from climate variables.

To obtain the predictor variables for the individual sites where we have in-situ measurements of
tree-ring widths, the corresponding values have been extracted from the gridded products and the
corresponding grid cells of each site. Because it is known that tree-ring growth for a single year does
not only depend on climate of this specific year but also of the previous year, we have used for each
annual tree-ring measurement the monthly predictor values of the current and the previous year. In
addition, we also performed experiments with anomalies of the predictors by subtracting the mean
seasonal cycles in contrast to using the plain values. Furthermore, we learned individual regression
models for each genus to have more consistent chronologies in each training set and utilized only
data from sites located in Europe. Since the available tree-ring chronologies are nonuniformly dis-
tributed among the different genera, we focused on the six most dominant genera with respect to



Table 1: Variables of the CRU TS dataset (version 3.22) that have been used as predictor variables
in order to estimate tree-ring widths.

Acronym  Explanation of the variable Unit
cld cloud cover %
dtr diurnal temperature range °C
frs ground frost frequency d
pet potential evapotranspiration mmd~1
pre precipitation mm
tmn near-surface temperature minimum °C
tmp near-surface temperature °C
tmx near-surface temperature maximum °C
vap vapour pressure hPa
wet wet day frequency d

the number of available samples (each with more than 100 sites), namely Abies (fir), Fagus (beech),
Larix (larch), Picea (spruce), Pinus (pine), and Quercus (oak). Qualitative results are obtained using
the predictions of a cross-validation scheme, more precisely a leave-one-site-out cross-validation for
each genus. The quality measures that we have used to measure the performance are the Nash-
Sutcliffe model efficiency (MEF), the root-mean-square error (RMSE), and Pearson correlation coef-
ficient (PCC) between observations and predictions.

3 Preliminary results

With the plain values of the predictor variables mentioned in the previous section, we were able to
obtain a model efficiency of 0.2824 for all chronologies of all genera based on cross-validation. This
roughly corresponds to 28 % explained variance on average within each time series of tree-ring incre-
ments. However, results clearly differ for individual genera, which can be observed from the summary
of performances in Table 2. For example, a model efficiency of 0.3263 has been obtained for Quer-
cus with plain values of predictors, while the accuracy with respect to model efficiency of estimated
tree-ring increments for Larix is only 0.1496. Thus, the quality of the predictions varies considerably
depending on the genus of the trees that are considered. The same holds also for the root-mean-
square error and the correlation coefficient as can be seen by comparing the corresponding values
in Table 2.

Since the tree-ring increments in the chronologies are relative values with respect to an estimated
age trend, we also decided to use relative values of the predictor variables. By subtracting the mean
seasonal cycle of each predictor variable obtained by averaging over the years 1901 to 2000, only
the resulting anomalies have been used to learn and evaluate the regression models. In the end, it
turned out that the results achieved with these anomalies have been the best among all experiments.
This is reflected in a model efficiency of 0.3367 among all genera and also larger accuracies for
individual genera, e.g., 0.3552 for Quercus and 0.3761 for Fagus as listed in Table 2. Again, poorer
results are obtained for Larix. This is probably due to the influence of the larch budmoth. The
larch budmoth is a widespread defoliator that feeds off fresh larch needles and periodically reaches
outbreak levels (Esper et al., 2007). These events are demarcated in the wood and partly obscure
the obtained relationships between radial tree growth and climate.

Additionally, we have tried further prediction approaches but we could not improve the results
obtained with the anomalies of the predictor variables explained in the previous section. For example,
we have used both plain values and anomalies of the predictors but prediction accuracies stayed on
the same level. The same holds for incorporating estimates of Gross Primary Production (GPP) at



Table 2: Cross-validation results obtained from a leave-one-site-out strategy for each genus individu-
ally and random forest regression models with MEF being the Nash-Sutcliffe model efficiency (optimal
value: 1), RMSE being the root-mean-square error (optimal value: 0), and PCC being Pearson corre-
lation coefficient (optimal value: 1).

Performance with Performance with

plain values of predictors anomalies of predictors
Genus MEF RMSE PCC MEF RMSE PCC
Abies 0.3258 0.1468  0.5809 0.3719 0.1417 0.6111
Fagus 0.3202 0.1782 0.5710 0.3761 0.1707 0.6153
Larix 0.1496 0.2048  0.3908 0.2286 0.1951 0.4806
Picea 0.3049 0.1277 0.5701 0.3544 0.1231 0.6009
Pinus 0.2321 0.1308 0.4976 0.2952 0.1253 0.5504
Quercus 0.3263 0.1362 0.5811 0.3552  0.1332 0.5981
All 0.2824 0.1451 0.5412 0.3367 0.1395 0.5835

a monthly time scale obtained from global vegetation models also known as TRENDY models (Sitch
et al., 2015). Interestingly, seasonal aggregation of the monthly values leads to worse prediction
performances for both setups, using plain values or the anomalies of the predictor variables. Thus,
individual monthly values seem to be important for achieving more accurate estimations. The same
conclusion can be drawn from our experiments in which we reduced the number of input dimensions
for random forest training by applying principal component analysis to all the predictor variables.
With different numbers of principal components (5, 10, ...,50) taken into consideration, we always
achieved inferior performance compared to using all monthly values of all variables.

Furthermore, we analyzed the auto-correlation within the chronologies as well as within our pre-
dictions and the residuals. As one example, we have focused on beech trees (Fagus). The largest
auto-correlation (about 30 % on average) in the corresponding chronologies has been observed for
a lag of one year, whereas larger lags show negligible auto-correlation on average as it can be ob-
served from Figure 1. Although we have also incorporated monthly values of the previous year for
each predictor variable in our cross-validation experiments, it turned out that the auto-correlation with
a lag of one year is still present in the residuals of our predictions. In fact, it is not even reduced but
on a comparable level. Thus, we plan to work on this issue in the next period of the project in order to
improve the accuracies of the predictions. One idea is to investigate modern deep learning methods
from the machine learning literature that are designed for time series predictions and directly model
memory and lag effects, e.g., LSTM models (Hochreiter and Schmidhuber, 1997; Greff et al., 2015).

Encouragingly, with our current random forest regression models we are already able to obtain
spatialized and yearly resolved tree-ring increments. From the chronologies of in-situ measurements
at individual sites, we have learned a random forest regression model for each genus using all avail-
able chronologies of the corresponding genus. To produce first dense products, we have used a
grid with 0.5° spatial resolution and extracted the predictor variables also used in our cross-validation
experiments for each grid cell in Europe (improving the spatial resolution will be part of future work).
Based on the regression models for each genus as well as the predictor variables for each grid cell
and each year, spatialized tree-ring increments can be estimated. Of course, it only makes sense to
predict tree-ring widths for grid cells where the trees of the corresponding genus occur. Therefore, we
made use of the tree species distribution maps from the European Atlas of Forest Tree Species (de
Rigo et al., 2016). The high-resolution data with grid cell sizes of 1km? has been aggregated to de-
cide whether we predict the tree-ring increment for the larger grid cell at 0.5° spatial resolution. In
particular, we have treated the large grid cell as a valid one for a genus if at least in one smaller
grid cell of corresponding species distribution maps, the presence of the trees is at least 5 %. Thus,
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Figure 1: Auto-correlation in observations, predictions, and residuals for Fagus chronologies up to a
lag of five years.

we could restrict our estimations to a smaller set of grid cells compared to whole Europe. Some
example maps are shown in Figure 2. We have selected two genera (Fagus and Quercus) and show
corresponding maps for the years 1990, 1995, and 2000. Nevertheless, appropriate maps can also
be computed for other years if data for the predictor variables is available (we have climate data from
the CRU TS dataset since 1901) and also for other genera. To ensure plausible results, it is recom-
mended to select one of the six dominant genera that have been used in the cross-validation analysis
to obtain a reasonable size of the training set for the regression models. The latter is also the reason
why we currently work on a genus level and not on a species level, because some species are only
represented by chronologies of few sites.

In addition, one can also observe from Figure 2 that trees of different genera respond differently
to the same climate conditions when comparing maps of the same year, e.g., looking at the same
regions in both the map for Fagus of the year 2000 and the map for Quercus of the year 2000. Thus,
it is important to make appropriate distinctions on the genus or species level. We also verified this
observation based on the chronologies from the in-situ measurements. In particular, we identified 57
locations in our data set where we have a tree ring chronology for both beech trees (Fagus) and oak
trees (Quercus). For each pair of chronologies, we computed the correlation coefficient taking only
those years into account, where measurements are available in both time series to handle the case
in which one chronology ends earlier than the other one. The distribution of the resulting correlation
coefficients is shown as a histogram in Figure 3. Out of the 57 pairs of chronologies, 45 pairs obtain
a value smaller than 0.45, which indicates no clear correlation and at most a rather weak connection.
This analysis supports our strategy of utilizing regression models from machine learning that are
trained individually for each genus.
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Figure 2: Estimated tree ring increments of Fagus and Quercus at 0.5° spatial resolution in Europe
are visualized for the years 1990, 1995, and 2000.

Histogram of correlation coefficients for paired chronologies from
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Figure 3: Distribution of correlation coefficients computed from pairs of chronologies consisting of
one chronology for beech trees (Fagus) and one chronology for oak trees (Quercus) both sampled at
the same site.
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