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Summary

In this deliverable Machine Learning methods are proposed to upscale Essential Eco-
system Variables and Ecosystem Functional Properties. Random Decision Forests
are proposed to upscale in-situ measured half-hourly carbon and energy fluxes, which
is a large-scale regression problem. Random Decision Forests fulfill the necessary
requirements in terms of robustness and computational speed for both training and
forward prediction. A combination of Random Decision Forests and Gaussian Process
is proposed to upscale Ecosystem Functional Properties. This approach is tailored
to the problem of accounting for, and producing additionally uncertainty estimates of
the prediction, which is a key requirement of this task. Various tests with dedicated
kernel functions to handle variables with different nature of variability (spatial vs spatio-
temporal) database were performed using the FLUXNET to verify the effectiveness of
the algorithm.
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1 Introduction

Understanding key processes of biosphere-atmosphere interactions requires knowl-
edge on diurnal variations of biosphere-atmosphere fluxes [6] on the one hand, and
information on spatial variations of key ecosystem functional properties on the other
hand. Previous efforts combined the global database FLUXNET with Earth Observa-
tions using Machine Learning approaches but those produced only fluxes at monthly
resolution [4],[5],[1]. This deliverable identifies and presents suitable Machine Learning
methods for the following two tasks in WP4 of BACI:

• Task 4.1 Land-atmosphere carbon and energy fluxes with sub-daily resolution:
This task of upscaling EEVs is a large scale regression problems. Very large
training data sets (several million observations) need to be considered and the
forward prediction task requires computations for roughly 109 data points.

• Task 4.2 Spatially explicit ecosystem functional properties: Mapping Ecosystem
Functional Properties at a global scale requires techniques that are able to mea-
sure its uncertainties, are capable of handling missing data, and are able to pro-
duce multivariate outputs that preserve the observed existing co-variation of the
target variables.
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2 Machine Learning Methods

After a thoroughly examination of the two problems detailed before we came to the
following conclusions:

• Random Decision Forest (RDF) are suitable for the large scale regression prob-
lem (working with EEVs). These models are capable of handling large data sets
in the training as well as in the test phase. The forward prediction for many points
(∼ 1011 data points to be predicted) is due to the tree composition computationally
feasible. The method is very well established and has been used widely in differ-
ent scientific communities. Another advantage is the robustness with respect to
overfitting due to different types of randomness utilized during training.

• A new machine learning method was designed to solve the problem of regression
where the uncertainty of the prediction is estimated and can be also integrated
as prior knowledge for input variables (in the case of working with EFP). This
new method combines Random Decision Forest (RDF) with Gaussian Process
Regression (GP).

In the following, we will give a brief overview of the RDF-GP method used in our
experiments. As mentioned before, the method proposed is a combination of random
decision forests (RDF) and Gaussian process (GP) regression in the leaf nodes of the
decision trees [7]. For a more detailed explanation for each of these machine learning
techniques the reader is referred to [3] and [9], respectively.

2.1 Random Decision Forests

An RDF is an ensemble method consisting of several decision trees that can be applied
to both classification and regression tasks. It is able to handle large sets of training ex-
amples (x, y)i, 1 ≤ i ≤ N and is using linear base classifiers (decision stumps) to
iteratively cluster the data in the attribute space. Beginning from a root node, simple
comparisons of attribute values of one dimension d, 1 ≤ d ≤ D with a threshold θ
decide whether a data example is handed over to the left (xd < θ) or the right (xd ≥ θ)
child node of a currently processed node.

The trees of an RDF are trained with specific randomization techniques in order to
avoid over-fitting to the training data. Each tree is learned with a random subset of
the complete training set. The data is recursively split by axis orthogonal hyperplanes
which are optimized with respect to a certain purity criterion (e.g. mean square error)
until a stopping criterion is reached. In each node, both attributes and thresholds for
the splitting are drawn randomly. The procedure is stopped if the current set contains
too few examples or a certain depth level of the tree is reached.

In order to get a target value y∗ for a given test example x∗ the example traverses
each of the learned trees of the RDF. It will reach one of the child nodes in each tree.
Each child node contains a set of examples which reached that node during training.
The average of their associated target values is the prediction value for that particular
leaf node. Accordingly, the prediction y∗ for a certain test example x∗ is the average of
predictions from all leaf nodes it landed in.

5



2.2 Gaussian Processes

The mapping from input data x to an target value y is often modeled by y = f(x) + ε,
where f is a noise-free latent function and ε a noise term. It is common to assume that
f belongs to a parametric family and the parameters which best describe the data have
to be learned. However, using GP the underlying function f can be modeled directly
without any fixed parametrization by assuming the function to be sampled from a spe-
cific distribution. Such a distribution on functions can be defined in a non-parametric
manner by GPs.

For the task of regression, we assume the latent function f to be a sample from a
GP prior f ∼ GP (0, K(·, ·)) with zero mean and a kernel function KRD × RD −→ R.
The target values y are conditionally independent given the latent function values
f(x) and are described using a noise model p(y|f(x)). A standard assumption for
GP regression is to model noise as a zero-mean Gaussian noise with variance σ2

N :
p(y|f(x)) = N (y|f(x), σ2

N). This allows for tractable predictions for unseen points x∗.
However, also heteroscedastic noise, i.e. non-homogeneous uncertainties of exam-
ples, can be modeled by be specifying different noise variances for each of the training
examples

Let K be the kernel matrix with pairwise kernel values of the training examples
Kij = K(xi,xj). Furthermore, let k∗ be the kernel values (k∗)i = K(xi,x∗) corre-
sponding to x∗. The most likely target value y∗ for x∗ and the given training data can
be predicted by:

y∗(x∗) = kT
∗ (K + σ2

NI)
−1y, (1)

where y is a vector of the target values corresponding to the training examples x
and I being the identity matrix.

Uncertainties of specific variables in the examples can be integrated by modifying
the kernel function used, e.g. by using a Gaussian kernel with a Mahalanobis distance.

2.3 Combining RDFs and GP

GPs are very powerful tools for the task of regression. However, during training the
kernel matrix has to be computed and inverted which is cubic in the number of training
examples N . As a consequence, it is often intractable to apply GP to large data sets
directly.

As a solution, we propose to combine RDFs and GPs. The RDF is trained in the
traditional manner using simple binary decision in the inner nodes. In each leaf node,
however, we learn a GP with a rather small kernel matrix using only the training exam-
ples which reached a certain leaf node. We thereby construct an ensemble of powerful
GP predictors in an efficient manner since the complexity for training and testing is
reduced [7].

6



3 Preliminary Experiments

3.1 Data

The experiments are based on in-situ measured carbon and energy fluxes from FLUXNET.
FLUXNET is a network of regional networks that coordinates regional and global anal-
ysis of observations from micro-meteorological tower sites1. An overview on the global
network and the tower sites around the world are given in Fig. 1.

Figure 1: FLUXNET is a network of regional networks (left) of flux towers which are
positioned around the world in different climate zones (right).

In these particular tests the so-called global primary production (GPP) at 8-daily
temporal resolution is the target value. It can only be measured at the tower sites using
the eddy covariance methods. However, there is a set of large-area input variables that
can be recorded using satellites. A corresponding list of these input variables is given
in Fig. 2. With the help of these globally available variables the GPP can be predicted
globally as well. Since both GPP and the input variables are available at each tower
site regression techniques can be used for prediction. It should be noted that some
variables are fixed for a specific tower site, e.g. the mean seasonal cycle attributes.

3.2 Experimental Setup

The FLUXNET based training dataset used consists of 11,501 data points with nine
dimensions each. The data points are stored as a sorted time-series in a 8-daily set-
ting. Since all points originate from flux towers the target variable GPP is given for all
data samples as well. In order to evaluate the approach experiments using a 10-fold
cross-validation were conducted.

For a quantitative evaluation of the method, the so-called Nash-Sutcliffe model effi-
ciency NSE = 1− SMSE [8] was utilized which makes use of the standardized mean
squared error (SMSE). The basis is the mean squared error (MSE) for T test cases:

1

T

T∑
i=1

(y(i)∗ − f̄(x(i)
∗ ))2 , (2)

1see: fluxnet.ornl.gov/introduction

7



−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−5

0

5

10

15

20

x1

G
P

P
−

H
B

240 260 280 300 320 340
−5

0

5

10

15

20

x2
G

P
P

−
H

B

290 295 300 305 310 315 320
−5

0

5

10

15

20

x3

G
P

P
−

H
B

230 240 250 260 270 280 290 300
−5

0

5

10

15

20

x4

G
P

P
−

H
B

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

x5

G
P

P
−

H
B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−5

0

5

10

15

20

x6

G
P

P
−

H
B

0 0.05 0.1 0.15 0.2 0.25
−5

0

5

10

15

20

x7

G
P

P
−

H
B

−1 0 1 2 3 4 5 6 7
−5

0

5

10

15

20

x8

G
P

P
−

H
B

0 5 10 15 20
−5

0

5

10

15

20

x9

G
P

P
−

H
B

dim meaning
1 satellite surface water indicator
2 satellite land surface temperature (daytime)
3 max of mean seasonal cycle of land surface temperature (daytime)*
4 satellite land surface temperature (night-time)
5 product of a satellite vegetation indicator and shortwave radiation
6 amplitude of mean seasonal cycle of a vegetation indicator*
7 amplitude of mean seasonal cycle of a middle infrared reflectance*
8 vegetation indicator
9 vegetation type*

Figure 2: Plots of the nine input dimensions of the FLUXNET dataset against the target
attribute GPP (left) and their corresponding description (right). Attributes marked with
an asterisk (*) vary only between flux towers and are therefore fixed for each site.

Name Splitting Prediction minLeaf SMSE
RDF (standard) Variance Mean 50 0.291
RDF (linear) Linear LSE Linear model 50 0.385
RDF (knn) MinDist k-NN Mean 50 0.281
RDF (exp1) Linear LSE k-NN Mean 50 0.386
RDF (exp2) MinDist Linear model 50 0.268

Table 1: Results using random forests with varying splitting and prediction functions.
See text for a more detailed analysis.

where f̄(x∗) is the regression method’s prediction for a single test sample and y∗ a
corresponding target value. In order to retrieve the SMSE the MSE is again normalized
using the variance of the target variable σGPP . As a consequence a simple mean
guessing using all training target values would lead in SMSE ≈ 1. Smaller SMSE
values indicate better prediction performances. While the optimal value would be 0 the
best reachable model efficiency NSE would be 1, accordingly.

3.3 Results using Random Forests

For the first series of experiments we used standard regression trees in a random for-
est setting. In the splitting function the sum of variances in both of the child subsets
with respect to the target variable is minimized. Therefore, a certain amount of random
splits on different input dimensions it tested and evaluated using the aforementioned
criterion. Consequently, prediction in a leaf node can be done by returning the mean
of target values from training examples that landed in that leaf. In a configuration using
ten trees we were able to reach a SMSE of 0.29.

We continued with varying the splitting and prediction functions. First of all, we al-
lowed a more general linear model. In contrast to ordinal splits linear least-squares es-
timation (LSE) was applied in inner nodes and a linear model was fit in the leaves. The
SMSE dropped drastically which could be explained by over-fitting and a sub-optimal
configuration. For instance, in all experiments of this series the minimum amount of
examples in a leaf node (minLeaf ) was set to 50 which is rather small when fitting a
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Name Kc Kd Kc dims Kd dims Comb SMSE
GP (se) SE 1-9 0.313
GP (se+g4) SE G4 1,2,4,5,8 3,6,7,9 + 0.285
GP (se+ov) SE OV 1,2,4,5,8 3,6,7,9 + 0.288
GP (se*g4) SE G4 1,2,4,5,8 3,6,7,9 * 0.304
GP (se*ov) SE OV 1,2,4,5,8 3,6,7,9 * 0.307
GP (se+g4) SE G4 1-8 9 + 0.293

Table 2: Results using Gaussian process regression with different kernel functions.
See text for a more detailed analysis.

linear model of nine dimensions.

In a second modified version of the regression trees splitting is done by minimizing
the distances in the input dimensions without taking target values into account (clus-
tering). For the prediction in the leaves, a mean of target values of the k -nearest
neighbors is used (k = 10). As can be seen from Table 1 this version was performing
comparable to the standard approach by reaching a SMSE of 0.28.

Some experimental combinations of the mentioned techniques completed this eval-
uation. A clustering approach in combination with linear model fitting performed best.
This is encouraging since it means that regression trees can be used as a sort of pre-
clustering technique for other more powerful regression tools.

One of these powerful tools are Gaussian processes which are a kernel-based tech-
nique. In order to get a benchmark for plain GP regression performance we utilized the
standard squared exponential kernel (SE, see above). We used all nine input dimen-
sions to create the kernel matrix which is then used for the regression task. As can be
seen in Table 2 we were able to reach a SMSE of 0.31 using this configuration. Note,
that an automatic relevance determination and a hyper-parameter optimization using
100 iterations was applied.

As stated earlier some input dimensions appear in a more discrete way since their
values only vary spatially between flux towers. To account for this setting, we choose to
combine different kernel functions. On the one side, we continued to use SE kernel for
the continuous dimensions (see Fig. 2). On the other side we used different distance
functions from [2] for discrete variables, explicitly, the Goodall4 (G4) and Overlap (OV)
functions.

In Table 2 we report on results using these different techniques in a variety of com-
binations. We combined discrete kernels (Kd) and continuous kernels (Kc) in both a
multiplicative and additive way. It turned out that the latter has a small performance
advantage. We were even able to outperform the standard configuration using only SE
kernel by reaching a SMSE of 0.28.
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Name Splitting Prediction minLeaf K SMSE
RDF-GP (se) Variance GP regr. 1000 SE 0.363
RDF-GP
(se+g4)

Variance GP regr. 1000 SE+G4 0.295

RDF-GP
(se+ov)

Variance GP regr. 1000 SE+OV 0.286

Table 3: Results using random forests with Gaussian process regression in leaves with
different kernel functions.

3.4 Results for RDF-GP

In a final evaluation, we combined the above explained methods of random forests and
Gaussian processes to account for the large amount of data that is to be processed in
the actual interpolation task. Since creating the kernel matrix takes cubic time we used
the regression trees of the random forest to pre-cluster the data. In each of the leaf
nodes a GP regression is applied with a much smaller kernel size. We set the minimum
amount of examples in a leaf node to 1000 and split the input dimensions for different
kernels as in the best performing configuration of preceding experiments.

The experimental results of our RDF-GP approach are depicted in Table 3. As
can be seen from the results, we were able to reach a SMSE of 0.29 using an additive
combination of SE and G4 kernels. The combination of SE and OV was performing only
slightly worse. However, it is worth noting that this configuration was advantageous in
the GP experiments without pre-clustering using random forests. For all experiments
in this series, we used standard splitting on the variance criterion in regression trees.
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4 Conclusions

The overall objective of Work Package 4 is to derive novel synergistic products of EEVs
and EFPs by integrating ground measurements and Earth Observation data with ad-
vanced mathematical methods.

This first deliverable of the WP 4 provides guidance regarding the upscaling of
EEVS and EFPs using machine learning methods. Potential solutions for two different
kinds of regression problems in WP4 were proposed.

In the case of EEVs, the main problem is the very large amount of data for train-
ing and prediction. Random Decision Forests, a well established and widely used tool,
were suggested as a promising approach. This has already been implemented by MPI-
BGC and the results will be presented in the respective report.

For the problem of upscaling ecosystem functional properties a method was de-
signed which combines Random Forest together with a Gaussian Process model and
tailored kernel functions to accommodate different types of predictor variables. The
Gaussian Process regression performed in the leaf nodes of Random Forests provides
uncertainty estimates of the prediction, as required by the project. Several tests with
FLUXNET data were conducted to evaluate and identify an optimal setup of the algo-
rithm.
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[7] B. Fröhlich, E. Rodner, M. Kemmler, and J. Denzler. Large-scale gaussian pro-
cess classification using random decision forests. Pattern Recognition and Image
Analysis, 22(1):113–120, 2012.

[8] J. E. Nash and J. V. Sutcliffe. River flow forecasting through conceptual models part
i — a discussion of principles. Journal of Hydrology, 10(3):282–290, April 1970.

[9] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

12


