
1 
 

 

 

Detecting changes in essential ecosystem and biodiversity properties- towards a Biosphere 
Atmosphere Change Index: BACI 

Deliverable 3.4: Synthesis dataset of biodiversity in plants and birds 

 

 

Project title: Detecting changes in essential ecosystem and biodiversity 
properties- towards a Biosphere Atmosphere Change Index 

Project Acronym: BACI 

Grant Agreement number: 640176 

Main pillar: Industrial Leadership 

Topic: EO- 1- 2014: New ideas for Earth-relevant space applications 

Start date of the project: 1st April 2015 

Duration of the project: 48 months 

Dissemination level: Public 

Responsible for the deliverable: Signe Normand (Aarhus University) 

Phone: +4587154345, Email: signe.normand@bios.au.dk  

Contributors: Robert Buitenwerf1, Jens-Christian Svenning1, Signe Normand1 
1 Aarhus University 

Date of submission: 29.09.2017 

  



2 
 

Contents 
Overview and aims of D3.4 ..................................................................................................................... 3 

Temporal change in plants functional traits ........................................................................................... 3 

Introduction ........................................................................................................................................ 3 

Methods .............................................................................................................................................. 3 

Data deliverable: maps of community weighted trait mean .............................................................. 6 

Bird community dynamics .................................................................................................................... 10 

Introduction ...................................................................................................................................... 10 

Methods ............................................................................................................................................ 11 

Bird monitoring data ..................................................................................................................... 11 

Analyses used to harmonise and synthesise the bird data ........................................................... 12 

Data deliverable: maps of temporal beta diversity .......................................................................... 13 

References ............................................................................................................................................ 15 

  

 
  



3 
 

Overview and aims of D3.4 
The purpose of WP3 is to provide ground data that represent ecosystem-scale processes in a form 
that is useful for calibrating, validating and interpreting space data. The specific aims of deliverable 
D3.4 is to centralize data on the spatial distribution and temporal dynamics of bird and plant 
communities and harmonise the data into a format that allows the calibration, validation and 
interpretation of space data, particularly the data generated in other BACI WPs. Specifically, we have 
compiled, harmonized, and synthesized data on plant and bird communities and provide two 
spatially explicit data sets of temporal change at the scale of Europe: (1) community weighted plant 
functional trait mean, (2) bird community dynamics.  While the plant data is potentially valuable for 
calibrating, validating and interpreting space data, the bird data is valuable for interpreting space 
data. 

Temporal change in plants functional traits 
Introduction 
Plants cover a large proportion of Earth’s terrestrial surface and therefore represent one of the main 
sources of variation in EO-derived variables. The majority of EO satellites since the 1970s have 
recorded spectral reflectance of visible and near-infrared wavelengths. Spectral reflectance in this 
range of the spectrum is highly sensitive to three broad vegetation attributes: three-dimensional 
vegetation structure, the biochemical composition of leaves and the physiological activity of those 
leaves. At large spatial scales and at coarse resolution, these attributes can be broadly classified into 
global biomes. However, within biomes and even within more narrowly defined vegetation types, 
there is substantial variation in the three-dimensional structure of individual canopies, in the 
biochemical composition and physiological functioning of leaves from different species, between 
individuals of the same species and even within canopies of a single individual. Representing these 
continuous gradients in vegetation structure and functioning by biomes (structure) or plant-
functional types (functioning) hinders progress in two important research venues, which are both 
addressed in the BACI project. First, mapping and monitoring of biodiversity, functional diversity, 
and ecosystem stability. Second, biophysical change mapping and monitoring  (Reichstein et al., 
2014) and the related earth system functioning, fluxes of energy and matter, and global climates. To 
an extent, this variation in plant structure and functioning can be quantified using plant functional 
traits. Therefore, we here provide data on continuous gradients in vegetation structure and 
functioning. Data expected to be of value for calibrating, validating and interpreting space data. 

Methods 
Vegetation survey data 
We requested access to data from the sPlot data repository1, an initiative started in 2013 by a 
consortium of scientists and hosted at the German iDiv research centre2. sPlot integrates data from 
national and other large vegetation plot surveys. It is global in scope, but sampling is highly 
geographically biased with large parts of the world being poorly represented. Nonetheless, sampling 
density in Europe is high, with >900,000 plots in the sPlot version that we had access to (July 2016).  
For Europe, these vegetation plots largely coincide with data contained in more established 
repositories, such as the European Vegetation Archive (EVA), but sPlot distinguishes itself from other 
repositories by merging data on community composition (from vegetation plots) with data on plant 

                                                           
1 https://www.idiv.de/splot 
2 https://www.idiv.de 



4 
 

functional traits. sPlot uses species mean trait values from the TRY database3. The version of TRY 
that was used in our version of sPlot contained data for 40,791 plant species and included 18 plant 
functional traits (Table 2).  

Table 1 Plant functional traits from TRY included in this study.  

Trait 
Specific leaf area (SLA) 
Plant height 
Seed mass 
Leaf dry matter content 
Stem density 
Leaf area 
Leaf N per dry mass 
Leaf P per dry mass  
Leaf N per unit area 
Leaf fresh mass 
Leaf N/P ratio 
Leaf C per dry mass 
Leaf  δ15N 
Stem conduit density 
Seed number per reproductive unit 
Wood vessel length 
Seed length 
Dispersal unit length 
 

Computing maps of community weighted trait means  
By matching species in the community composition data with species names in TRY, we were able to 
calculate community weighted mean (CWM) trait values for each plot. It is important to recognise 
that not all species recorded in the plot surveys have an entry in TRY. In total, 62% of all recorded 
species had a record in TRY. However, it must be pointed out that this estimate may be inaccurate as 
the taxon was not always resolved to species level in the community data, but sometimes only to 
genus or family level. The percentage of species within each plot for which trait values are known is 
shown in Fig. 3a. In Fig. 3b species are weighted by their relative cover values. These figures show 
that in the majority of plots all species were represented in TRY and that the species that were 
represented in TRY account for the greatest portion of vegetation cover within these plots. We 
therefore conclude that the calculated CWM trait values should be good estimates for the vast 
majority of plots.  
 

                                                           
3 https://www.try-db.org  
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Figure 1 Representation of species in TRY. a) The number of vegetation plots as a function of proportion of species within 
each plot that is represented in TRY. b) As a), but weighted by each species’ relative cover.   

 

 

Figure 2 The number of plots in sPlot within the study area as a function of time 

 

We calculated CWM values for all traits for all plots and then aggregated plots spatially into a 1/12 
degree grid. This resolution is arbitrary, but is consistent with several long-term satellite products 
(e.g. the GIMMS AVHRR data). Moreover, this resolution is coarse enough to not have many empty 
grid cells in the more densely sampled areas while it is fine enough to detect spatial gradients in 
CWM trait values that coincide with environmental gradients. Maps of CWM trait values are shown 
in Fig. 5.  

Some plot surveys predate 1900, but the majority of plots were surveyed after 1950 (Fig. 4). For our 
product we only used data between 1970 and 2010, which coincides with the satellite era. This 
period contains 69% of data points within the study area. To provide the opportunity for temporal 
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analyses, especially with satellite data, we split the data up by decade i.e. four decades from 1970 to 
2010. Again, the choice of decadal time steps is somewhat arbitrary, but the sparsity of the data 
does not allow much smaller time steps. As an example, Fig. 7 shows decadal time steps in plant 
height, but these data are available for all 18 traits.  

Finally, we recognise that changes in plant community composition and the associated CWM of trait 
values may result from abrupt shifts in human land-use change, rather than from gradual change 
driven by slower processes such as climatic change, nitrogen deposition or increased atmospheric 
CO2. To accommodate the separation of these driving processes, it is necessary to quantify 
compositional turnover within a particular land-use or land cover type. However, reliable land cover 
maps at sufficiently high resolution are only available for approximately the past 20 years. We 
therefore used a subset of the sPlot data, 2001 to 2010, and intersected it with the 2006 Corine land 
cover map to estimate CWM trait values per 1/12 degree grid cell, for each of nine broad semi-
natural land cover classes from the Corine map. Fig. 8 shows the example for plant height over the 
period 2001-2010 in the nine selected semi-natural land cover types.  

Data deliverable: maps of community weighted trait mean 
We produced 234 spatial layers, quantifying the temporal dynamics of 18 plant functional traits 
during the satellite era. For all 18 traits there are four decadal time steps (1970s-2000s) and for the 
2000s the data has been split up by land cover type. These data quantify biodiversity change at a 
functional level and are thus valuable independently. Furthermore, the observed trends in plant 
functional composition may be reflected in Earth observation variables. Such potential links with 
space data will be explore in D8.5.   
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Figure 3 Community weighted trait values. Grid resolution is 1/12 degree.  
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Figure 4 Community weighted trait values. Grid resolution is 1/12 degree.  
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Figure 5 CWM plant height per decade. The maps have a resolution of 1/12 degree.  
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Figure 6 CWM plant height during the 2000s in nine semi-natural vegetation types. Land cover types were taken from the 
Corine land cover map. The data have a resolution of 1/12 degree but for clarity the resolution for the plotted maps was 
aggregated to 0.25 degree.  

 

Bird community dynamics  
Introduction 
Unlike plant communities, bird communities do not affect Earth Observation (EO) variables by their 
physical presence, structure and composition. In other words, bird communities are generally not 
directly observable from space, at least not with the spatial resolution of the sensors currently 
exploited in BACI (e.g. Sentinel). Nevertheless, spatiotemporal dynamics of bird populations and 
communities may serve as indicators of environmental change that can be detected using EO. The 
primary reason for this is that the population dynamics of many bird species is tightly linked to land 
cover and human land-use. As such, bird population dynamics and community dynamics may be 
used to interpret anomalies detected in space data. On the other hand, it is difficult to use bird 
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population and community dynamics for validating and calibrating space data, as there are many 
other variables that affect bird population dynamics. Examples of important drivers of bird 
population dynamics that are not readily observed from space include human hunting pressure, 
disease and the soil and surface water concentrations of certain toxins, e.g. heavy metals. However, 
the population and community dynamics of different bird species may not respond to the 
environmental perturbations immediately. These possible lags effects additionally, challenges the 
use of bird population and community dynamics as indicators of environmental change using EO 
variables. With these challenges and opportunities in mind, we have aimed at synthesising a data set 
that is both novel and useful.  

Methods 
Bird monitoring data 
The data harmonised and synthesised focusses on Europe, as bird monitoring programs in several 
European countries have collected high-quality survey data, often over considerable periods. These 
data have not been aggregated previously, which is in sharp contrast with e.g. the North American 
Breeding Bird Survey that has been publicly available and has thus been explored and analysed in 
many scientific studies and publications. The fragmented nature of European bird survey data, plus 
the fact that in many countries there is no official protocol by which to apply for access to the data, 
makes gaining access particularly challenging. Nonetheless, we gained access to data from six 
countries/regions: Sweden, Denmark, Poland, the UK, France and Catalonia. Of these, Sweden, 
Denmark and Catalonia cover BACI focus areas. The data we gain access to is unique, but also 
challenging to harmonize. Survey methods vary by country. There are differences in sampling design 
(i.e. how sampling sites are choses and which sites are surveyed each year), the area of each 
sampling site, sampling duration, whether surveys are conducted in plots or along transects, etc. The 
details are summarised in Table 1 and Figure 1.  

 

Table 2 Description of sampling schemes for different bird monitoring programs in different countries. 

 Sampling 
unit 

Extent?  Obs. unit Obs. units / 
Sampl. unit 

Obs. unit 
dim.  

Duration 
/ obs. unit 

Surveys 
yr-1 

Time 
span 

Sweden Transect 8 km  Transect 
section 

8 1000×200 m 30-40 min 
km-1 

1 2000-
2015 

Denmark Transect  Point 10-20 200 m 
radius 

5 min 1 2000-
2016 

Poland Grid cell 1×1 km  Transect 
section 

10 200×200 m  40 min 
km-1 

2 2000-
2015 

England Grid cell 1×1 km Transect 
section 

10 200×200 m 60 min 
km-1 

2  

France Grid cell 2×2 km Point 10 200 m 
radius 

5 × 2 min 2 2001-
2015 

Catalonia Transect 3 km Transect 
section 

6 500×200 m 30-40 min 
km-1 

2 2002-
2015 
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Figure 7 Graphical representation of the sampling schemes summarised in Table 1.  

 

Analyses used to harmonise and synthesise the bird data 
Since survey methods differed significantly between countries, it is unlikely that abundance 
estimates can be harmonised in a meaningful way. Major error would result from uncertainty in the 
sampling area of transect-based methods, variation in observer skill, variation in detectability of 
different species, variation in detectability of birds in different vegetation types (e.g. dense forest vs. 
open pasture) and variation in detectability with weather conditions. To avoid spurious comparisons, 
we therefore focus on presence/absence data. Although some of the the same points listed above 
may apply to presence/absence data, we assume perfect detection in order to make comparisons 
between sites and between countries. Perfect detection is a reasonable assumption when skilled 
observers follow strict sampling protocols, such as described above.  

Community composition varies spatially as various traits and processes affect species ranges, 
including environmental tolerances or preferences, dispersal, biotic interactions such as competition 
and so on. To quantify the dissimilarity among biological communities we use beta diversity, which 
has been explored extensively in the literature. Beta diversity is generally defined as the ratio 
between regional (gamma) and local (alpha) diversity  (Whittaker, 1960) . However, communities 
can differ in different ways. Principally, there may be a difference in species richness but one 
community is a subset of the other, communities may differ in composition but not in the number of 
species (richness), or both composition and richness may differ. A multitude of indices to estimate 
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beta diversity have been developed to address these different types of community dissimilarity, 
many of which are based on one of several distances (or dissimilarity) metrics. Here we adopt the 
approach of  (Baselga & Leprieur, 2015) , who estimate overall beta diversity but also partition 
overall beta diversity into a nestedness component (one community is a subset of another 
community) and a turnover component (communities differ in composition, but not in richness).  

The concept of beta diversity can be extended to temporal change. Instead of estimating differences 
in composition between communities in different geographic locations, it is possible to quantify 
differences in community composition at the same locations but at different times.  

For each pair of subsequent years, for each site, we calculated overall temporal beta diversity, the 
nestedness component of beta diversity and the turnover component of beta diversity. Then, for 
each pair of subsequent years, we up-scaled the site-specific beta diversity estimates to 0.5×0.5 
degree grid cells, by averaging beta diversity estimates of all sites within a grid cell. This yielded time 
series of all three beta diversity estimates from 2001 to 2015.  

Data deliverable: maps of temporal beta diversity 
The time series of the three beta diversity metrics from 2001 to 2015 are made available. The year-
to-year dissimilarities are summarised in Fig. 2, where temporal beta diversity indices were averaged 
over all years of the time series. The maps show strong latitudinal gradients of temporal beta 
diversity and both of its components, with higher temporal change at higher latitudes.  

The delivered data provide interesting patterns of temporal change in bird communities. Although 
this work is primarily about delivering data, not interpreting data, the patterns of temporal change in 
bird communities that emerged call for further inspection and exploration. Overall temporal beta 
diversity and both the nestedness and turnover components of beta diversity were substantially 
higher in Sweden than in the other countries. Climate change at these high latitudes, particularly in 
the form of warming, has been large relative to the more temperate regions covered by the rest of 
this dataset. A potential relationship with the observed changes in bird communities should 
therefore be explored. However, other kinds of strong ecological change that affect vegetation have 
also been recorded in northern Scandinavia, including increased reindeer grazing  (den Herder et al., 
2008; Cohen et al., 2013)  and outbreaks of geometrid moths (Hagen et al., 2007; Jepsen et al., 
2009). These types of changes are likely to be captured by the BACI-Index and we will explore 
relationships between bird community change and the BACI-Index under D8.5.  
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Figure 8 Temporal beta diversity of bird communities between 2001 and 2015. The maps show dissimilarity between 
subsequent pairs of years, averaged over all years of the time series. Plot-scale measurements were aggregated by 
averaging to 0.5 degree grid cells.   
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